
Applied
Reinforcement
Learning
with Python

With OpenAI Gym, Tensorf low,
and Keras
—
Taweh Beysolow II

Applied
Reinforcement

Learning with Python
With OpenAI Gym, Tensorflow,

and Keras

Taweh Beysolow II

Applied Reinforcement Learning with Python: With OpenAI Gym,
Tensorf low, and Keras

ISBN-13 (pbk): 978-1-4842-5126-3		 ISBN-13 (electronic): 978-1-4842-5127-0
https://doi.org/10.1007/978-1-4842-5127-0

Copyright © 2019 by Taweh Beysolow II

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Celestin Suresh John
Development Editor: Rita Fernando
Coordinating Editor: Divya Modi

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.
com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book's product page, located at www.apress.com/978-1-4842-5126-3.
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Taweh Beysolow II
San Francisco, CA, USA

https://doi.org/10.1007/978-1-4842-5127-0

This book is dedicated to my friends and family who
supported me through the most difficult of times for

the past decade. They have enabled me to be the person
I am capable of being when operating at my best.

Without you, I would not have the ability to continue
living as happily as I am.

v

Table of Contents

Chapter 1: Introduction to Reinforcement Learning������������������������������1

History of Reinforcement Learning��2

MDPs and their Relation to Reinforcement Learning���3

Reinforcement Learning Algorithms and RL Frameworks�������������������������������������7

Q Learning��10

Actor-Critic Models���11

Applications of Reinforcement Learning��12

Classic Control Problems��12

Super Mario Bros.���13

Doom��14

Reinforcement-Based Marketing Making���15

Sonic the Hedgehog���16

Conclusion���17

Chapter 2: Reinforcement Learning Algorithms����������������������������������19

OpenAI Gym���19

Policy-Based Learning���20

Policy Gradients Explained Mathematically���22

About the Author��ix

About the Technical Reviewer��xi

Acknowledgments��xiii

Introduction���xv

vi

Gradient Ascent Applied to Policy Optimization���24

Using Vanilla Policy Gradients on the Cart Pole Problem�������������������������������������25

What Are Discounted Rewards and Why Do We Use Them?��������������������������������29

Drawbacks to Policy Gradients��36

Proximal Policy Optimization (PPO) and Actor-Critic Models�������������������������������37

Implementing PPO and Solving Super Mario Bros.��38

Overview of Super Mario Bros.���39

Installing Environment Package���40

Structure of the Code in Repository���40

Model Architecture���41

Working with a More Difficult Reinforcement Learning Challenge����������������������47

Dockerizing Reinforcement Learning Experiments��50

Results of the Experiment��52

Conclusion���53

Chapter 3: Reinforcement Learning Algorithms: Q Learning and
Its Variants��55

Q Learning��55

Temporal Difference (TD) Learning��57

Epsilon-Greedy Algorithm��59

Frozen Lake Solved with Q Learning��60

Deep Q Learning��65

Playing Doom with Deep Q Learning��66

Simple Doom Level���71

Training and Performance��73

Limitations of Deep Q Learning��74

Double Q Learning and Double Deep Q Networks��74

Conclusion���75

Table of ContentsTable of Contents

vii

Chapter 4: Market Making via Reinforcement Learning����������������������77

What Is Market Making?��77

Trading Gym���81

Why Reinforcement Learning for This Problem?��82

Synthesizing Order Book Data with Trading Gym���84

Generating Order Book Data with Trading Gym��85

Experimental Design��87

RL Approach 1: Policy Gradients���90

RL Approach 2: Deep Q Network��91

Results and Discussion��93

Conclusion���94

Chapter 5: Custom OpenAI Reinforcement
Learning Environments��95

Overview of Sonic the Hedgehog���95

Downloading the Game��96

Writing the Code for the Environment��98

A3C Actor-Critic��103

Conclusion���111

Appendix A: Source Code���113

Market Making Model Utilities���113

Policy Gradient Utilities��115

Models���116

Chapter 1���125

OpenAI Example���125

Chapter 2���125

Cart Pole Example��125

Table of ContentsTable of Contents

viii

Super Mario Example���130

Chapter 3���134

Frozen Lake Example���134

Doom Example���139

Chapter 4���146

Market Making Example���146

Chapter 5���158

Sonic Example��158

�Index��165

Table of ContentsTable of Contents

ix

About the Author

Taweh Beysolow II is a data scientist and

author currently based in the United States.

He has a bachelor of science in economics

from St. Johns University and a master of

science in applied statistics from Fordham

University. After successfully exiting the

start-up he co-founded, he now is a Director

at Industry Capital, a San Francisco–based

private equity firm, where he helps lead the

cryptocurrency and blockchain platforms.  

xi

About the Technical Reviewer

Santanu Pattanayak currently works at GE

Digital as a Staff Data Scientist and is author

of the deep learning book Pro Deep Learning

with TensorFlow (Apress, 2017). He has 8

years of experience in the data analytics/

data science field and also has a background

in development and database technologies.

Prior to joining GE, Santanu worked in

companies such as RBS, Capgemini, and

IBM. He graduated with a degree in electrical

engineering from Jadavpur University, Kolkata,

and is an avid math enthusiast. Santanu is

currently pursuing a master’s degree in data

science from the Indian Institute of Technology (IIT), Hyderabad. He also

devotes his time to data science hackathons and Kaggle competitions

where he ranks within the top 500 across the globe. Santanu was born

and brought up in West Bengal, India, and currently resides in Bangalore,

India, with his wife.  

xiii

Acknowledgments

I would like to thank Santanu, Divya, Celestin, and Rita. Without you, this

book would not be nearly as much of a success as it will be. Secondarily,

I would like to thank my family and friends for their continued

encouragement and support. Life would not be worth living without them.

xv

Introduction

It is a pleasure to return for a third title with Apress! This text will be the

most complex of those I have written, but will be a worthwhile addition

to every data scientist and engineer’s library. The field of reinforcement

learning has undergone significant change in the past couple of years, and

it is worthwhile for everyone excited with artificial intelligence to engross

themselves in.

As the frontier of artificial intelligence research, this will be an

excellent starting point to familiarize yourself with the status of the field

as well as the most commonly used techniques. From this point, it is my

hope that you will feel empowered to continue on your own research and

innovate in your own respective fields.

1© Taweh Beysolow II 2019
T. Beysolow II, Applied Reinforcement Learning with Python,
https://doi.org/10.1007/978-1-4842-5127-0_1

CHAPTER 1

Introduction to
Reinforcement
Learning
To those returning from my previous books, Introduction to Deep

Learning Using R1 and Applied Natural Learning Using Python,2 it is a

pleasure to have you as readers again. To those who are new, welcome!

Over the past year, there have continued to be an increased proliferation

and development of Deep Learning packages and techniques that

revolutionize various industries. One of the most exciting portions of this

field, without a doubt, is Reinforcement Learning (RL). This itself is often

what underlies a lot of generalized AI applications, such as software that

learns to play video games or play chess. The benefit to reinforcement

learning is that the agent can familiarize itself with a large range of tasks

assuming that the problems can be modeled to a framework containing

actions, an environment, an agent(s). Assuming that, the range of

problems can be from solving simple games, to more complex 3D games,

to teaching self-driving cars how to pick up and drop off passengers in a

1�New York: Apress, 2018.
2�New York: Apress, 2017.

2

variety of different places as well as teaching a robotic arm how to grasp

objects and place them on top of a kitchen counter.

The implications of well-trained and deployed RL algorithms are

huge, as they more specifically seek to drive artificial intelligence outside

of some of the narrow AI applications spoken about in prior texts I have

written. No longer is an algorithm simply predicting a target or label, but

instead is manipulating an agent in an environment, and that agent has

a set of actions it can choose to achieve a goal/reward. Examples of firms

and organizations which devote much time to researching Reinforcement

Learning are Deep Mind as well as OpenAI, whose breakthroughs in the

field are among the leading solutions. However, let us give a brief overview

of the history of the field itself.

�History of Reinforcement Learning
Reinforcement Learning in some sense is a rebranding of optimal control,

which is a concept extending from control theory. Optimal control

has its origins in the 1950s and 1960s, where it was used to describe a

problem where one is trying to achieve a certain “optimal” criterion and

what “control” law is needed to achieve this end. Typically, we define an

optimal control as a set of differential equations. These equations then

define a path toward values that minimize the value of the error function.

The core of optimal control is the culmination of Richard Bellman’s

work, specifically that of dynamic programming. Developed in the 1950s,

dynamic programming is an optimization method that emphasizes the

solving of a large individual problem by breaking it down into smaller and

easier-to-solve components. It is also considered the only feasible method

of solving stochastic optimal control problems and moreover consider in

general all of optimal control to be reinforcement learning.

Chapter 1 Introduction to Reinforcement Learning

3

Bellman’s most notable contribution to optimal control is that of the

Hamilton-Jacobi-Bellman (HJB) equation. The HJB equation

V x t V x t F x u C x u
u

, , , ,() + Ñ () () + (){ } =×min ,0

s t ,. . V x T D X() = ()

where V x t,() = the partial derivate of V w.r.t. the time variable t. a · b,
V x t,() = Bellman value function (unknown scalar) or the cost incurred

from starting in state x at time t and controlling the system optimally until

time T, C = the scalar cost rate function, D = final utility state function,

x(t) = system state vector, x(0) = an assumed given, u(t) for 0 ≤ t ≤ T.

The solution yielded from this equation is the value function, or

the minimum cost for a given dynamic system. The HJB equation is

the standard method by which one solves an optimal control problem.

Furthermore, dynamic programming is generally the only feasible way

or method for solving stochastic optimal control problems. One of these

problems, which dynamic programming was developed to help solve, is

Markov decision processes (MDPs).

�MDPs and their Relation to
Reinforcement Learning
We describe MDPs as discrete time stochastic control process. Specifically,

we define discrete time stochastic processes as a random process in

which the index variable is characterized by a set of discrete, or specific,

values (in contrast to continuous values). MDPs are specifically useful for

situations in which outcomes are partially affected by participants in the

process but the process also exhibits some degree of randomness as well.

MDPs and dynamic programming thus become the basis of reinforcement

learning theory.

Chapter 1 Introduction to Reinforcement Learning

4

Plainly stated, we assume based on a Markov property that the future

is independent of the past given the present. In addition to this, this state

is considered sufficient if it gives us the same description of the future as if

we have the entirety of the historical information. This in essence means

that the current state is the only piece of information that will be relevant

and that all historical information is no longer necessary. Mathematically,

a state is said to have the Markov property iff

P S S P S S St t t t+[] = + ¼1 1 1| [| , ,]

Markov processes themselves are considered to be memory-less,

in that they are random transitions from state to state. Furthermore, we

consider them to be a tuple (S, P) on a state space S where states change

via a transition function P, defined as the following:

P S s S sss t t¢ += = =¢ [|1],

where S = Markov state, St = next state.

This transition function describes a probability distribution, where the

distribution is the entirety of the possible states that agent can transition

to. Finally, we have a reward that we receive from moving from one state to

another, which we define mathematically as the following:

R R S S
G R R R R

s t t

t t t t
k

t k

= =

= + + + +
+

+ + +
-

+

[|1
1 2

2
3

1

],
g g g

where γ = discount factor, γ ∈ [0, 1], Gt = total discounted rewards,

R = reward function.

We therefore define a Markov reward process (MRP) tuple as (S, P, R, γ).

With all of these formulae now described, the image in Figure 1-1 is an

example of a Markov decision process visualized.

Chapter 1 Introduction to Reinforcement Learning

5

Figure 1-1 shows how an agent can, with varying probability, move

from one state to another, receiving a reward. Optimally, we would learn to

choose the process that accumulated the most rewards in a given episode

before we failed given the parameters of the environment. This, in essence,

is a very basic explanation of reinforcement learning.

Another important component of the development of Reinforcement

Learning was trial and error learning, which was one method of

studying animal behavior. Most specifically, this has proven useful for

understanding basic reward and punishment mechanisms that “reinforce”

different behaviors. The words “Reinforcement Learning” however

would not appear until the 1960s. During this period, the idea of the

“credit-assignment problem” (cap) would be introduced, specifically by

Marvin Minsky. Minsky was a cognitive scientist who devoted much of

his lifetime to artificial intelligence, such as his book Perceptrons (1969)

and the paper in which he describes the credit assignment problem,

“Steps Toward Artificial Intelligence” (1961). The cap asks how does one

distribute “credit” for success with respect to all the decisions that were

Figure 1-1.  Markov Decision Process

Chapter 1 Introduction to Reinforcement Learning

6

made in achieving that success. Specifically, many reinforcement learning

algorithms are directly devoted to solving this precise problem. With this

being stated, however, trial and error learning largely became less popular,

as neural network methods (and supervised learning in general) such as

innovations forwarded by Bernard Widrow and Ted Hoff took up most of

the interest within the field of AI. However, a resurgence of interest in the

field is most notable in the 1980s, when temporal difference (TD) learning

truly takes wind as well as with the development of Q learning.

TD learning specifically was influenced by, ironically, another aspect

of animal psychology that Minsky pointed out as being important. It comes

from the idea of two stimuli, a primary Reinforcer that becomes paired

with a secondary Reinforcer and subsequently influences behavior. TD

learning itself, however, was largely developed by Richard S. Sutton. He is

considered to be one of the most influential figures in the field of RL as his

doctoral thesis introduced the idea of temporal credit assignment. This

refers to how rewards, particularly in very granular state-action spaces, can

be delayed. For example, winning a game of chess requires many actions

before one has achieved the “reward” of winning the game. As such,

reward signals do not have significant effect on temporally distant states.

As such, temporal credit assignment solves for how you reward these

granular actions in such a way that meaningfully affect temporally distant

states. Q learning, named for the “Q” function that yields the reward,

builds on some of these innovations and focuses on finite Markov decision

processes.

With Q learning, this brings us to the present day, where further

improvements on reinforcement learning are continually being made

and represent the bleeding edge of AI. With this overview being complete,

however, let us more specifically discuss what readers can be expected to

learn.

Chapter 1 Introduction to Reinforcement Learning

7

�Reinforcement Learning Algorithms
and RL Frameworks
Reinforcement learning analogously is very similar to the domain of

supervised learning within traditional machine learning, although there

are key differences. In supervised learning, there is an objective answer

that we are training the model to predict correctly, whether that is a

class label or a particular value, based on the input features from a given

observation(s). Features are analogous to the vectors within the given

state of an environment, which we feed to the reinforcement learning

algorithm typically either as a series of states or individually from one state

to the next. However, the main difference is that there is not necessarily

always one “answer” to solve the particular problem, in that there are

possibly multiple ways by which a reinforcement learning algorithm could

successfully solve a problem. In this instance, we obviously want to choose

the answer that we can arrive at quickest that simultaneously solves the

problem in as efficient a manner as possible. This is precisely where our

choice of model becomes critical.

In the prior overview of the history of RL, we introduced several

theorems which you will be walked through in detail in the following

chapters. However, being that this is an applied text, theory must also be

supplied alongside examples. As such, we will be spending a significant

amount of time in this text discussing the RL framework OpenAI

Gym and how it interfaces with different Deep Learning Frameworks.

OpenAI Gym is a framework that allows us to easily deploy, compare,

and test Reinforcement Learning algorithms. However, it does have a

great degree of flexibility, in that we can utilize Deep Learning methods

alongside OpenAI gym, which we will do in our various proofs of

concepts. The following shows some simple example code that utilizes

the package and the plot that shows the video yielded from the training

process (Figure 1-2).

Chapter 1 Introduction to Reinforcement Learning

8

import gym

def cartpole():

 environment = gym.make('CartPole-v1')

 environment.reset()

 for _ in range(50):

 environment.render()

 action = environment.action_space.sample()

 �observation, reward, done, info = environment.

step(action)

 print("Step {}:".format(_))

 print("action: {}".format(action))

 print("observation: {}".format(observation))

 print("reward: {}".format(reward))

 print("done: {}".format(done))

 print("info: {}".format(info))

When reviewing the code, we notice that when working with gym, we

must initialize an environment in which our algorithms sit. Although it

is common to work with environments provided by the package, we can

also create our own environments for custom tasks (like video games

not provided by gym). Moving forward however, let us discuss the other

variables defined worth noting as shown from the terminal output as

follows.

Figure 1-2.  Cart Pole Video Game

Chapter 1 Introduction to Reinforcement Learning

9

action: 1

observation: [-0.02488139 0.00808876 0.0432061 0.02440099]

reward: 1.0

done: False

info: {}

The variables can be broken down as follows:

•	 Action – Refers to action taken by the agent within an

environment that subsequently yields a reward

•	 Reward – Yielded to the agent. Indicates the quality of

action with respect to accomplishing some goal

•	 Observation – Yielded by the action: Refers to the state

of the environment after an action has been performed

•	 Done – Boolean that indicates whether the

environment needs to be reset

•	 Info – Dictionary with miscellaneous information for

debugging

The process flow that describes the actions is shown in Figure 1-3.

Figure 1-3.  Process Flow of RL Algorithm and Environment

Chapter 1 Introduction to Reinforcement Learning

10

To provide more context, Figure 1-2 shows a cart and a pole video

game, where the objective is to successfully balance the cart and the pole

such that the pole never tilts over. As such, a reasonable objective would be

to train some DL or ML algorithm such that we can do this. We will tackle

this particular problem later in the book however. The purpose of this

section is just to briefly introduce OpenAI Gym.

�Q Learning
We briefly discussed Q learning in the introduction; however, it is

worthwhile to highlight the significant portion of this text we will utilize to

discuss this topic. Q learning is characterized by the fact that there is some

police, which informs an agent of the actions to take in different scenarios.

While it does not require a model, we can use one, and it specifically

is often applied for finite Markov decision processes. Specifically, the

variants we will tackle in this text are Q learning, Deep Q Learning (DQL),

and Double Q Learning (Figure 1-4).

Chapter 1 Introduction to Reinforcement Learning

11

We will discuss this more in depth in the chapters that specifically

reference these techniques; however, Q learning and Deep Q Learning

each have respective advantages given the complexity of the problem,

while both often suffering from similar downfalls.

�Actor-Critic Models
The most advanced of the models we will be tackling in this book are the

Actor-Critic Models, which are comprised of the A2C and A3C. Both of

these respectively stand for Advantage Actor-Critic and Asynchronous

Advantage Actor-Critic models. While both of these are virtually the same,

the difference is that the latter has multiple models that work alongside

each other and update the parameters independently while the former

updates its parameters for all of the models simultaneously. These models

update on a more granular basis (action to action) rather than in an

episodic manner as many of the other Reinforcement Learning algorithms

do. Figure 1-5 shows an example of the Actor-Critic Models visualized.

Figure 1-4.  Q Learning Flow Chart

Chapter 1 Introduction to Reinforcement Learning

12

�Applications of Reinforcement Learning
After the reader has been thoroughly introduced to the concepts of

reinforcement learning, we will tackle multiple problems where the focus

will be showing the reader how to deploy solutions that we will be training

and utilizing on cloud environments.

�Classic Control Problems
Being that the field of optimal control has been around for roughly the

past 60 years, there are a handful of problems that we will begin tackling

first that users will see often referenced in other reinforcement learning

literature. One of them is the cart pole problem, which is referenced in

Figure 1-2. This is a game in which the user is required to try and balance

a cart pole using the optimal set of options. Another one of these is shown

in Figure 1-6, called Frozen Lake, in which the agent learns how to cross a

lake which is frozen without stepping on the ice that would cause the agent

to fall through.

Figure 1-5.  Actor-Critic Models Visualized

Chapter 1 Introduction to Reinforcement Learning

13

�Super Mario Bros.
One of the most beloved video games of all time turns out to be one of the

best ways to display how the use of reinforcement learning in artificial

intelligence can be applied to virtual environments. With the help of the

py_nes library, we are able to emulate Super Mario Bros. (Figure 1-7) and

then utilize the data from the game such that we can train the model to

play the level. We will focus on one level exclusively and will be utilizing

AWS resources for this application, giving readers an opportunity to gain

experience in this task.

Figure 1-6.  Frozen Lake Visualized

Chapter 1 Introduction to Reinforcement Learning

14

�Doom
A classic reinforcement learning example that we will apply here is

learning to play a simple level of the video game Doom (Figure 1-8).

Originally released in the 1990s on the PC, the focus of this video game is

to successfully kill all the demons and/or enemies you face while making

it through the entirety of the level. However, this makes for an excellent

application of Deep Q Learning given the scope of actions, the packages

available, among other helpful attributes.

Figure 1-7.  Super Mario Bros.

Chapter 1 Introduction to Reinforcement Learning

15

�Reinforcement-Based Marketing Making
A common strategy for different proprietary trading firms is to make

money by providing liquidity to participants with the objective of buying

and selling an asset at any given price. While there are established

techniques for this strategy, this is an excellent arena to apply

reinforcement learning to as the objectives are relatively straightforward

and it is a data-rich field. We will be working with limit order book data

from Lobster, a web site which contains a large amount of excellent order

book data for experiments such as this. In Figure 1-9, we can see what an

example of an order book would look like.

Figure 1-8.  Doom Screenshot

Chapter 1 Introduction to Reinforcement Learning

16

�Sonic the Hedgehog
Another classic video game that is appropriate for us to utilize different

models on will be Sonic the Hedgehog (Figure 1-10). Except in this

particular chapter, we will walk the reader through the process of creating

their own environment from scratch that they can wrap an environment

utilizing OpenAI gym and custom software, and then training their own

Reinforcement Learning algorithm to then solve the problem of the level.

This again will utilize AWS resources for training, piggybacking off of the

same processes that were utilized in the other video game examples,

specifically Super Mario Bros.

Figure 1-9.  Limit Order Book

Chapter 1 Introduction to Reinforcement Learning

17

�Conclusion
The purpose of this text will be to familiarize readers with how to apply

Reinforcement Learning in the various contexts that they work in. Readers

should be familiar with Deep Learning Frameworks such as Tensorflow

and Keras, from which we will be working to deploy many of the Deep

Learning models used in conjunction with. While we will take time to

explain reinforcement learning theory, and some of that which overlaps

with Deep Learning might be explained, the majority of this text will be

dedicated to discussing theory and application of RL. With that being said,

let us begin by discussing the basics of Reinforcement Learning in depth.

Figure 1-10.  Sonic the Hedgehog

Chapter 1 Introduction to Reinforcement Learning

19© Taweh Beysolow II 2019
T. Beysolow II, Applied Reinforcement Learning with Python,
https://doi.org/10.1007/978-1-4842-5127-0_2

CHAPTER 2

Reinforcement
Learning Algorithms
Readers should be aware that we will be utilizing various Deep Learning

and Reinforcement Learning methods in this book. However, being that

our focus will shift to discussing implementation and how these algorithms

work in production settings, we must spend some time covering the

algorithms themselves more granularly. As such, the focus of this chapter

will be to walk the reader through several examples of Reinforcement

Learning algorithms that are commonly applied and showing them in the

context of utilizing OpenAI gym with different problems.

�OpenAI Gym
Before we dive into any concrete examples, let’s first briefly discuss the

software that the reader will be utilizing for the majority of this text.

OpenAI is a research institute based in the San Francisco Bay Area. Of

the many papers that they have contributed within the field of Artificial

Intelligence, one of the greatest open source contributions they have made

is the OpenAI “gym.” A package released for python, OpenAI gym provides

several environments in which users can begin utilizing reinforcement

learning algorithms. We will utilize this package most specifically for the

video game environments in which we can train our algorithms; however,

let us start by trying to understand the package and how to utilize it.

20

The basis of gym is the environment. In Chapter 1 we discussed the

environment, the various variables we defined, as well as the outputs from

the environment. In each game or environment we make, they will often

be observed to be different. The cart pole game we play in this chapter

will be a very small vector; however, the Super Mario Bros. environment

we work through later will be significantly more complex. However, let us

start this chapter by looking at the cart pole as well as a new environment

and trying to understand what precisely we might want to do within this to

solve the problem. The cart pole problem was described by Barto, Sutton,

and Anderson (1983) in “Neuronlike Adaptive Elements That Can Solve

Difficult Learning Control Problem.” The objective in the cart pole problem

is to keep the pole balanced on the cart. We receive a reward of 1 for every

frame in which the pole is vertical; however, the game is lost if the pole no

longer remains vertical in any given frame. We will, instead of focusing on

the methods they took to solve this problem, however, focus on utilizing

policy gradient methods, one of the bedrocks of Reinforcement Learning.

�Policy-Based Learning
Policy-based gradient methods focus on optimizing the policy function

directly rather than trying to learn a value function that would yield

information on the expected rewards in a given state. Simply stated, we are

selecting an action separately from choosing to utilize a value function.

Policies bifurcate into the following classes:

•	 Deterministic – A policy that maps a given state to

an action(s), specifically where the actions taken

“determine” what the outcome will be. For example,

you are typing on a keyboard on a word file. When you

press “y,” you are certain the character “y” will appear

on the screen.

Chapter 2 Reinforcement Learning Algorithms

21

•	 Stochastic – A policy that yields a probability distribution

over a set of actions, such that there is a probability that

the action taken will not be the action that occurs. This

is specifically used in instances where the environment

is not deterministic and is an example of a partially

observable Markov decision process (POMDP).

Policy-based methods have a few specific advantages over value-based

methods, which are important to keep in mind for the reader during the

modeling process. Foremost, they tend to converge better on solutions

than value-based methods. The reason behind this is that we are being

guided toward a solution by a gradient. Intuitively, gradient methods point

toward the steepest function we are differentiating. When applied to an

error function, and used in the form of gradient descent, we will adjust our

actions that minimize the error function’s value (locally or globally). As

such, we are generally going to have a feasible solution. In contrast, value-

based methods can yield a considerably larger and more non-intuitive

range of values between actions of minimal difference. Specifically, we do

not have the same guarantee of convergence.

Secondly, policy gradients are particularly adept at learning

stochastic processes whereas value-based functions cannot. While not

every environment is not stochastic, many practical examples of where

Reinforcement Learning might hopefully be applied will be stochastic.

The reasoning behind why value functions fail here is that they require

explicitly defined environments where actions inside of them will yield

specific outcomes that must be deterministic. As such, an environment

which is stochastic does not have to yield the same outcome for the same

action taken, and as such this makes value-based learning in such an

environment a null method. In contrast, policy-based methods do not

need to explore an environment by taking the same action. Specifically,

there is no exploration/exploitation trade-off (choosing between what

does where the outcome is known vs. trying an action whose outcome

Chapter 2 Reinforcement Learning Algorithms

22

is not known). Thirdly, policy-based methods are significantly more

effective in high-dimensional spaces, because they are significantly

less computationally expensive. Value-based methods require that

we calculate a value for each possible action. If we have a space with

a considerably high number of actions (or infinite), this will make

converging on a solution practically impossible. Policy-based methods

just have us perform an action and adjust the gradient. Now that we have a

general understanding of policy-based learning methods, let us apply this

to the cart pole problem.

�Policy Gradients Explained Mathematically
With a broad understanding of policy-based methods, let’s dive head first

into the mathematical explanation of policy gradients. You should recall in

the first chapter that we briefly introduced the concept of Markov decision

processes. We define an MDP as a tuple (S, P, R, γ) such that

R R S Ss t t= =+[|1],

G R R R Rt t t t
k

t k= + + + ++ + +
-

+1 2
2

3
1g g g

With the reward and the value function defined, we can now

mathematically discuss the policy. The environment itself an agent

cannot control; however, the agent does have control over what actions

it makes, within some bound of reason. As such, the policy is defined

as the probability distribution of all actions during a given state of the

environment. This is mathematically described as the following:

p A a S st t= =()| ,

" Î () ÎA A s S St t,

where π = the policy, S= state space, A = action space, At = action at

timestep t, St = state at timestep t.

Chapter 2 Reinforcement Learning Algorithms

23

Now, we understand that a policy guides our agent through an

environment, where certain actions are possible at a given state that

our environment is in. How and where exactly does the policy gradient

fit in? The purpose of the policy gradient method is to maximize the

expected reward assuming the agent has a policy. The policy therefore is

parameterized by θ, where trajectory is defined as τ. Trajectory is broadly

defined as the sequences of actions, rewards, and states that we observe

over the course of a given episode when we follow a given policy. Episodes

themselves refer to instances in which the agent is still performing some

set of actions in the environment before we have reached a point where

either we have reached the objective of the problem or we have failed the

episode entirely. Therefore, the total reward is mathematically defined as

r(τ) such that

arg max J rq tp() = ()éë ùû

We then apply the standard machine learning approach, where we find

the best parameters to maximize the policy gradients through gradient

descent. As a brief review, the gradient of a function represents the point of

greatest rate of increase in the function, and its magnitude is the slope of

the graph in that direction. The gradient is usually multiplied by a learning

rate, which determines the speed of convergence toward an optimal

solution for the function. Simply stated, however, the gradient is typically

defined as the first derivative of a given function. How do we utilize this

however to optimize a policy choice?

Chapter 2 Reinforcement Learning Algorithms

24

�Gradient Ascent Applied to Policy
Optimization
Gradient descent–based optimization is common in different machine

learning methods, such as linear regression as well as backpropagation for

weight optimization in multilayer perceptrons. However, gradient ascent is

what we will utilize here to optimize the policy we choose. Instead of trying

to minimize the error, we are trying to maximize the score that we get over

the entirety of the episode that our algorithm will be utilized in. As such,

the parameter update should look like the following:

q q a qq:= + Ñ ()J

So the objective of the problem can be stated as the following:

q
q

pq
* = ()é

ë
ê

ù

û
úåarg max E R s a

t
t t,

Verbally, we are trying to pick the value of the parameters that

maximizes the reward yielded for actions taken within a given state. In the

particular instance that we are modeling, we are trying to pick the weights

for the network that maximizes the score. We therefore mathematically

define the derivative of the expected total reward as the following:

Ñ  p pt t p tr r()éê ùú = ()Ñ ()éê ùúlog ,

p t pq() = () () ()
=

+ +ÕP s a s p s r s a
t

T

t t t t t t0
1

1 1| , | ,

The reasoning behind why we take the geometric sum is because,

according to the theorems laid forth in Chapter 1 on Markov decision

processes, each of the actions taken are independent from one another.

Chapter 2 Reinforcement Learning Algorithms

25

Therefore, the associated cumulative rewards should be calculated in a

similar fashion. This process is repeated over the length of the trajectory,

which logically follows the length of a given episode and the associated

rewards, states, and actions. When we take the log of the total reward, we

define that mathematically as the following:

log log log logp t pq() = () + () +
= =

+ +å åP s a s p s r s a
t

T

t t
t

T

t t t0
1 1

1 1| , | , tt(),

Ñ Ñ Ñ

Ñ

log log

log

p t p t

t p

q p

p q

() = ()® ()éë ùû

= ()

=

=

å

å

t

T

t t

t

T

a s r

r a

1

1

| 

 tt ts|()
æ

è
ç

ö

ø
÷

é

ë
ê
ê

ù

û
ú
ú

Decomposing all of this, the log of the expected reward is simply the

cumulative sum of the log of each of the individual rewards that the policy

yields from an action at a given time, given a state, summed over the

entirety of the trajectory. The importance of understanding this and what

is often referred to as “model-free” algorithms that we utilize in RL is that

implicitly shown in these equations is the fact that we never model the

environment, because we never know the distribution of the states at all.

The only thing that we are modeling, in fact, are the rewards. Now with the

mathematical underpinning of policy gradients explained, let us move on

next to applying this on a classic control problem: cart pole.

�Using Vanilla Policy Gradients on the Cart
Pole Problem
For this problem, we will be utilizing Keras, a library known for its

ability to quickly deploy neural network models. Although we will utilize

Tensorflow later in this chapter, the models we will deploy here will be a

part of packages that are defined within the “applied_rl_python/neural_

Chapter 2 Reinforcement Learning Algorithms

26

networks/models.py” file. In here, users will see classes that I have created

that will make using these solutions both within and outside of this text

easier than defining these architectures repetitively:

class MLPModelKeras():

(Code redacted, please see the source code

 def create_policy_model(self, input_shape):

 input_layer = layers.Input(shape=input_shape)

 advantages = layers.Input(shape=[1])

 �hidden_layer = layers.Dense(n_units=self.n_units,

activation=self.hidden_activation)(input_layer)

 �output_layer = layers.Dense(n_units=self.n_columns,

activation=self.output_activation)(hidden_layer)

 �def log_likelihood_loss(actual_labels, predicted_

labels):

 �log_likelihood = backend.log(actual_labels *

(actual_labels - predicted_labels) + (1 - actual_

labels) * (actual_labels - predicted_labels))

 �return backend.mean(log_likelihood * advantages,

keepdims=True)

 �policy_model = Model(inputs=[input_layer, advantages],

outputs=output_layer)

 �policy_model.compile(loss=log_likelihood_loss,

optimizer=Adam(self.learning_rate))

 �model_prediction = Model(input=[input_layer],

outputs=output_layer)

 return policy_model, model_prediction

What users should take away from this section of code is the fact that

we are defining a neural network to be used for policy gradient methods,

specifically here one that can be reused and redefined in other problems

Chapter 2 Reinforcement Learning Algorithms

27

moving forward. The benefit of Keras is that it allows you to quickly create

neural network models that would be significantly more verbose if you had

utilized Tensorflow. This additional layer of abstraction automates and

reduces the amount of code that needs to be written to write that same

neural network model in Keras. In so far as this model is used to solve this

specific problem, users should look at Figure 2-1 to try and understand the

problem we are trying to solve with this neural network.

Figure 2-1.  Neural Network for Cart Pole Problem

The input layer represents the environment and its orientation at

that given state, and the two classes represent the probabilities for the

respective actions we can take. Specifically, we will choose the action

with the highest probability of being correct, as this is modeled as a

classification problem.

Moving forward, let us look at the actual code we will be utilizing

to solve the problem, found in “chapter2/cart_pole_example.py.”

This file begins by defining some parameters that are useful to take

note of. Although gym is frequently updated, this book was written

using gym version 0.10.5. In this particular version, I suggest that readers

always define the environment variable globally and later accessing

the environment’s attributes within different functions. In addition

to that, defining the “environment_dimension” variable here resets

the environment initially. Now, let us direct our attention to the

“cart_pole_game()” function, which is where the majority of the

Chapter 2 Reinforcement Learning Algorithms

28

computation will be occurring within this example. Specifically, let us look

at the body of the code that continues while we have still not lost the game

within a specific episode:

 �state = np.reshape(observation, [1, environment_

dimension])

 prediction = model_predictions.predict([state])[0]

 �action = np.random.choice(range(environment.action_

space.n), p=prediction)

 states = np.vstack([states, state])

 actions = np.vstack([actions, action])

 observation, reward, done, info = environment.step(action)

 reward_sum += reward

 rewards = np.vstack([rewards, reward])

The beginning of the code should look familiar to readers from the

example file given in the first chapter; however, there are some slight

differences. We define an observation variable here, which to begin every

experiment is the initialized state of the environment. The prediction the

model yields are the probabilities. The specific action we take here is a

random sample of the possible actions we can take. The states and actions

are then appended to a vector which we will utilize later. As usual, we

then perform an action within the given environment that yields the new

observation, the current reward, as well as an indication as to whether we

have failed or are still succeeding within the environment. This process

continues until we have lost the game, which brings us to the “calculated_

discounted_reward()” function.

Chapter 2 Reinforcement Learning Algorithms

29

�What Are Discounted Rewards
and Why Do We Use Them?
As stated earlier, the purpose of policy gradient methods is to utilize

gradient-based optimization to choose a set of actions that achieve the

optimal result in the environment given our objectives. We define the

probability distribution of actions that we can take at a given state as the

following:

pq a s P a s| |() = []

where π = policy, θ = parameter, a = action, s = state.

Being that this is a gradient-based optimization problem, we also want

to define the cost function, given by the following:

J E rq gpq() = å[]

The above equation is the policy score function, which is the expected/

average reward of the policy we choose. Because this is an episodic-based

task, we suggest that the user calculate the discounted reward on the entire

episode. An example of how this is calculated is given by the following

equation:

J E G R R R Rk
k1 1 1 2

2
3

1q g g gp() = = + + + +éë ùû
-



J E V s1 1q p() = ()()

where k = number of steps in episode, G = summed discounted reward,

γ = discount tuning parameter, R = reward, V = value.

Chapter 2 Reinforcement Learning Algorithms

30

The calculate_discounted_reward() function gives a vector of the

discounted reward for every given reward yielded, and then with the vector

reversed, shown as follows:

def calculate_discounted_reward(reward, gamma=gamma):

output = [reward[i] * gamma**i for i in range(0, len(reward))]

return output[::-1]

We discount the rewards given the value of some tuning parameter

that we raise to a different power over each step, and the reward being

what is yielded from the environment given the action we take at that step.

We then average the discounted rewards vector, which yields the output of

the cost function for that episode.

discounted_rewards -= discounted_rewards.mean()

discounted_rewards /= discounted_rewards.std()

discounted_rewards = discounted_rewards.squeeze()

Readers will observe the following transformations that we perform

to the “discounted_rewards” vector. For readers who don’t know, the

np.array.squeeze() function takes an array with multiple elements and

concatenates them such that the following is true:

[[1, 2], [2, 3]] -> [1, 2, 2, 3]

The reasoning behind discounted rewards is fairly straightforward in

that by discounting rewards, we make an otherwise infinite sum finite.

If we do not discount rewards, the sum of these rewards would grow

infinitely and therefore we would not be able to converge upon an optimal

solution.

How do we calculate the score?

In our code, we specifically utilize the “score_model()” function, which

runs a user-specified number of trials using the trained model to yield

the average score over these number of trials. This allows us to see, in a

generalized sense, how the model is performing, rather than looking at one

Chapter 2 Reinforcement Learning Algorithms

31

trial in which the model might have performed better due to chance. Our

score function can alternatively be defined as the following:

J E Rq tp() = ()éë ùû

where R(τ) = expected future reward.

How this is implemented is fairly straightforward; however, let us

explain the score_model() function shown as follows:

def score_model(model, n_tests, render=render):

(code redacted, please see github)

 �state = np.reshape(observation, [1, environment_

dimension])

 predict = model.predict([state])[0]

 action = np.argmax(predict)

 �observation, reward, done, _ = environment.

step(action)

 reward_sum += reward

 if done:

 break

 scores.append(reward_sum)

 environment.close()

 return np.mean(scores)

You will observe that we will not render the environment standard for

every time we want to score the model. I recommend this to readers as this

significantly would slow the training process in addition to being relatively

uninformative. If you do care to render the model, you should only do so

once you have a model you feel has reached your benchmarks for a given

problem.

In this function, we pass through a model, which we train on a batch

earlier. This model is trained specifically utilizing the states and their

respective discounted rewards, along with the respective actions we have

Chapter 2 Reinforcement Learning Algorithms

32

taken in each of the states. Intuitively, we are trying to train a model to

become more accurate at predicting how to predict the actions that would

lead to a specific set of rewards by choosing a random action over each

iteration. As such, the weights will optimize to yielding the reward given

the state consistently. Over time, this should produce a model that when

given a specific state will understand what specifically it would do in order

to yield a given reward. Therefore, per the framing of the problem, we

will eventually yield a model that will yield our score threshold because

the weights are optimized to classify a state correctly for the goal of

maximizing our score over time.

As with all gradient descent/ascent problems, we have to differentiate

the objective function so we can calculate the gradient which is therefore

utilized to optimize the weights. Because we are differentiating a probability

function, it is recommended that we utilize a logarithm (this is why we

utilize a log-likelihood loss for the error function defined on the backend in

neural_networks/models.py). Let us look at the plot of a likelihood function

vs. the log likelihood of that function (Figures 2-2 and 2-3).

Chapter 2 Reinforcement Learning Algorithms

33

Figure 2-2.  Likelihood Function

Figure 2-3.  Log-Likelihood Function

Chapter 2 Reinforcement Learning Algorithms

34

The derivative of the score function is given by the following:

	
Ñ Ñq p qq p q tJ E log s a R() = ()() ()éë ùû, , (2.8)

Because of utilizing gradient ascent, we are most likely to move the

parameters most in the direction that maximizes the reward yielded from

the environment.

After we have updated our parameters with batch training, we must

re-initialize the states, actions, and rewards vectors as being empty. To

summarize what the cart_pole_game() function is doing, after having

discussed this in detail, here is the process flow:

	 1.	 Initialize variables that will be populated by

interacting with the environment in their

respective states.

	 2.	 In a given episode, perform actions until the game

has been lost. Given a state, use the model to predict

the best action to action. Append the states, actions

taken within those states, and rewards yielded in

that state.

	 3.	 Calculate the discounted rewards and then use

those rewards to train on a batch of states, actions,

and rewards.

	 4.	 Score the trained model and repeat until

convergence on performance threshold determined

by user.

With our code fully explained, we now can execute it and watch the

results. When the user executes the code, the results shown in Figures 2-4

and 2-5 should be seen.

Chapter 2 Reinforcement Learning Algorithms

35

Figure 2-4.  Example Output from Policy Gradient Problem

Figure 2-5.  Error Plot from Policy Gradient Problem

Chapter 2 Reinforcement Learning Algorithms

36

This specific solution converged in approximately 5000–6000

episodes over multiple experiments, with our goal set at 190. We have

now completed an example of an episodic problem and one in a discrete

problem space. Now that we know the type of problems we can utilize

vanilla policy gradients in, where would it be the case that we could not

utilize policy gradients?

�Drawbacks to Policy Gradients
One of the larger criticisms of reinforcement learning worth addressing

at this stage is the sampling efficiency of policy gradients and in RL at

large. Sampling efficiency refers to the degree to which our algorithm

is able to learn more quickly by only using the states that yield the most

important information to learn from. Specifically, policy gradients do not

discriminate between the individual actions taken within an episode.

Meaning, if the actions we took during an episode lead to a high reward,

even if some subset of these actions were very suboptimal, we conclude

that those set of actions were all good. We can only learn how to choose

an optimal policy by usually iterating through non-optimal policies. This

has been mitigated by important sampling; however, that is a technique

utilized in off-policy learning which we will discuss later. However, this

drawback is not exclusive to policy gradients. In addition to this, policy

gradients can have a tendency to converge on local maxima rather than a

global maximum as many gradient descent–based methods often can. This

also contributes to a greater difficulty in training an appropriate model.

To solve some of these issues, we can instead choose to update on a more

granular level than the episodic scheme taken in vanilla policy gradients

as shown previously. This leads us to our next topic, Proximal Policy

Optimization.

Chapter 2 Reinforcement Learning Algorithms

37

�Proximal Policy Optimization (PPO)
and Actor-Critic Models
PPO specifically deals with policy gradient tendencies to get stuck in local

maxima by imposing a penalty on the objective function and then utilizing

gradient descent on this newly reformed gradient descent. Such that the

equation looks like the following:

max
q

q

q
q

p
p

b p
 

 t
t t

t t
t t t

a s
a s

A KL s
old

old

|
|

| ,()
()

é

ë
ê
ê

ù

û
ú
ú
- ×() ppq ×()éë ùûé

ë
ù
û|st

(2.9)

where β = tuning parameter, KL = KL divergence,


At = advantage function.

The basic intuition behind this adaptive penalty is that we utilize the

KL divergence between the old and the new policy, which will change over

each iteration within an episode. If the value from the KL divergence is

higher than the target value δ, we shrink the tuning parameter. However,

if it falls below the target value δ, we expand the region in which we are

willing to search for different parameters. The benefit to adding the penalty

is that it ensures that the area in which we search for the parameters to

define the policy is significantly smaller and adjusts based on the degree

of correctness on a much more granular level than episodic. That way,

bad actions within an episode will be penalized directly rather than

being averaged out across other decisions that might have been good.

This stepwise rather than episodic change is the key component to the

Actor-Critic model, on which PPO is based. In this instance, the tuning

parameter tied with the KL divergence is the critic model with the policy

being the actor.

The advantage function will be a key component of Actor-Critic

models, which we utilize instead of a value function to the algorithm’s

decision-making process. The reasoning here is because value functions

have high variability, whereas advantage functions more clearly convex

Chapter 2 Reinforcement Learning Algorithms

38

functions. The intuition behind how the gradient optimization is that

our parameters will optimize in directions where the advantage function

is above 0 and will move away from parameter choices where gradients

are below 0. Next, we define the advantage function which we will utilize

instead of a value function:

A s a Q s a V s, ,() = () - ()

where Q(s, a) = Q value for action a in state s, V(s) = average value of states s.

Actor-Critic models bifurcate into two strategies: (1) Actor Advantage

Critic (A2C) and (2) Asynchronous Advantage Actor-Critic (A3C). Both of

these algorithms work as we have briefly described Actor-Critic models;

however, the only difference is that A3C does not update the global

parameters for every actor at the same time (at the end of every iteration),

hence the asynchronous description. The training will be faster for A2C in

this instance.

Let us inspect this algorithm more closely, however, by applying it

to a slightly more difficult game than cart pole, Super Mario Bros, and

solving the solution more directly.

�Implementing PPO and Solving
Super Mario Bros.
For this model, we will be utilizing code that is provided within some of

the packages that I have created as well as open source libraries. Although

the game can be changed, users should also feel free to try and solve this

problem utilizing other problems. Because of the training time that is

associated with A3C, I am going to utilize A2C. In addition to this, I will

briefly walk users through how to set up a Google Cloud instance for

training, which is recommended for any reinforcement learning–based

task such as this.

Chapter 2 Reinforcement Learning Algorithms

39

�Overview of Super Mario Bros.
Super Mario Bros. (Figure 2-6) is a relatively simple but classic video game

that allows users to see the power of reinforcement learning without

adding some of the complexity that we will see in other video game

environments later in the book. The player has a number of actions that

can be utilized, which are listed at https://github.com/Kautenja/gym-

super-mario-bros/blob/master/gym_super_mario_bros/actions.py.

Figure 2-6.  Super Mario Bros. Screenshot

The objective of every level is the same: We are trying to avoid all

obstacles and enemies so we can touch the flag pole at the end to win

the level. The flag pole will always be at the rightmost end of the level,

and although there are other bonuses such as mushrooms and brief

invincibility that we can gain, those are not the primary goals. For this

example, we will not specifically worry about the separate goal of most

users, which is to reach the flag, since this will likely be very difficult to

train a model for and is only an added bonus.

Chapter 2 Reinforcement Learning Algorithms

https://github.com/Kautenja/gym-super-mario-bros/blob/master/gym_super_mario_bros/actions.py
https://github.com/Kautenja/gym-super-mario-bros/blob/master/gym_super_mario_bros/actions.py

40

�Installing Environment Package
For this particular environment, users are encouraged to utilize gym-

super-mario-bros which can be installed utilizing the following command:

pip3 install gym-super-mario-bros

Super Mario Bros. is not a standard environment provided in the

gym package, so an environment needs to be created. Thankfully, this

open source package takes care of that task so we can focus on the model

architecture for this problem. We will work with Tensorflow directly this

time rather than Keras but will access a class from the “neural_networks/

models.py” directory.

�Structure of the Code in Repository
Unlike the prior example, from this point forward readers should

anticipate that they will need to reference the model architecture as it is

defined in different files within the repository such as under the “neural_

neworks” and “algorithms” directories. In this specific example, the

structure of the code is as follows:

•	 The A2C Actor-Critic Model is defined in “models.py”

as a class.

•	 “algorithms/actor_critic_utilities” contains the

Model and Runner classes. These, including the

ActorCriticModel, are all instantiated within the learn_

policy() function defined within this file. This is the

function in which most of the computation will end up

occurring.

These classes and functions are taken from the baselines library

released by OpenAI and slightly modified. The reasoning behind this is

that rather than working through this manually, it is important for the

Chapter 2 Reinforcement Learning Algorithms

41

reader to understand why and how these models work rather than simply

calling them. As such, let us first begin by discussing the model we are

using and why.

�Model Architecture
For this problem, we will be treating this as an image recognition

problem. As such, we will be using a simple LeNet Architecture, which is

a type of Convolutional Neural Network architecture. Popular for image

recognition, these were first developed by Yann LeCun in the late 1980s.

Figure 2-7 shows a typical LeNet Architecture.

Figure 2-7.  LeNet Architecture

We will treat each frame as a picture, convolve over this frame to create

feature maps, and then continuously reduce the dimensionality of these

feature maps until we reach our softmax encoded output vector from

which we will randomly choose actions and then eventually train on this

batch in the same way we did in the prior vanilla policy gradient example.

Readers will now observe the code that details the ActorCriticModel() class

that we have created that contains the model architecture and relevant

attributes:

 self.distribution_type = make_pdtype(action_space)

 height, weight, channel = environment.shape

 environment_shape = (height, weight, channel)

Chapter 2 Reinforcement Learning Algorithms

42

 �inputs_ = tf.placeholder(tf.float32, [None,

environment_shape], name="input")

 self.distribution_type = make_pdtype(action_space)

 height, weight, channel = environment.shape

 environment_shape = (height, weight, channel)

 �inputs_ = tf.placeholder(tf.float32, [None,

environment_shape], name="input")

 scaled_images = tf.cast(inputs_, tf.float32)/float(255)

 �layer1 = tf.layers.batch_normalization(convolution_

layer(inputs=scaled_images,

filters=32,

kernel_size=8,

strides=4,

gain=np.sqrt(2)))

(code continued later)

Before we speak about the implementation of the Actor-Critic Model

to the Super Mario Bros. level, let us briefly discuss what we should do

to preprocess our image data and how it needs to move through the

CNN. Images typically are 256 bits and contain 3 dimensions. What this

means when we process an image into a python matrix is that the matrix

yielded initially should be of dimensions m x n x 3, where m and n are

the length and width, respectively, with each dimension of the matrix

representing a color channel. Specifically, we typically expect the color

channels to represent red, green, and blue. In the instance of Super Mario,

we expect the matrix to appear as in Figure 2-8.

Chapter 2 Reinforcement Learning Algorithms

43

To initially reduce complexity of the images, we will grayscale them so

that the initially three-dimensional matrix becomes a one-dimensional

matrix. The 256 bits each represent a degree of brightness of color with

1 being black and 256 being white. Because python data structures are

indexed by 0, 255 is the upper bound, and as such will be what we scale

our input images by. Now that we’ve focused on how we will preprocess

our data, that brings us to the first of the convolutional layers that we will

be moving through.

Readers will notice that the layers that we make here are

utilizing a function that uses a helper function around the convolution

layer function native to Tensorflow. In addition to this, we utilize the

batch_normalization() on each of the convolutional layers. As stated

earlier, the feature maps we will create continue to get smaller. The data

that remains is, in theory, the pixels that are the most informative for

classification purposes moving forward. Now, we move forward until

we flatten all of the feature maps into one array, which we then use to

compute V(s). This function’s output, as well as other important values, is

defined as attributes which we will call during the training of this model.

Figure 2-8.  Example of Super Mario Image Matrix (Before
Preprocessing)

Chapter 2 Reinforcement Learning Algorithms

44

Moving forward from the ActorCriticModel, let us discuss the Model()

class, whose code is shown as follows:

class Model(object):

 �def __init__(self, policy_model, observation_space, action_

space, n_environments,

 �n_steps, entropy_coefficient, value_

coefficient, max_grad_norm):

(code redacted, please see github)

 �train_model = policy_model(session, observation_

space, action_space, n_environments*n_steps, n_steps,

reuse=True)

 �error_rate = tf.nn.sparse_softmax_cross_entropy_with_

logits(logits=train_model.logits, labels=actions_)

 mean_squared_error = tf.reduce_mean(advantages_ * error_rate)

 �value_loss = tf.reduce_mean(mse(tf.squeeze(train_model.

value_function) ,rewards_))

 �entropy = tf.reduce_mean(train_model.distribution_type.

entropy())

 �loss = mean_squared_error - entropy * entropy_

coefficient + value_loss * value_coefficient

(code continued later)

In the code, we start with “policy_model()” which is in actuality the

ActorCriticModel() class that we discussed earlier. After this has been

instantiated and passed through this class, we take the error rate from the

individual iteration as it would have occurred within the Model() class.

What readers see immediately should be familiar from standard neural

Chapter 2 Reinforcement Learning Algorithms

45

network training utilizing Tensorflow. Moving forward, let us inspect the

Runner() class

class Runner(AbstractEnvRunner):

 �def __init__(self, environment, model, nsteps, total_

timesteps, gamma, _lambda):

 �super().__init__(environment=environment, model=model,

n_steps=n_steps)

 self.gamma = gamma

 self._lambda = _lambda

 self.total_timesteps = total_timesteps

 def run(self):

 �_observations, _actions, _rewards, _values, _dones =

[],[],[],[],[]

 for _ in range(self.n_steps):

 �actions, values = self.model.step(self.obs, self.

dones)

 _observations.append(np.copy(self.observations))

 _actions.append(actions)

 _values.append(values)

 _dones.append(self.dones)

 �self.observations[:], rewards, self.dones, _ =

self.environment.step(actions)

 _rewards.append(rewards)

(code continued later!)

Readers will observe that we have defined in the previous section

of code some variables that we saw in the last example. Specifically, we

define gamma which will be utilized as a discount factor. Again, it is

significantly easier for gradient descent to work with smaller gradients

to optimize weights than it is for the network to work with larger values.

Chapter 2 Reinforcement Learning Algorithms

46

As we go through each of the iterations through the maximum amount

of steps we are allowed to take through this environment, we append to

the observations, actions, values, rewards, and the Boolean term which

determines whether we have failed or are still playing the current episode.

(code redacted, please see Github)

delta = _rewards[t] + self.gamma * nextvalues *

nextnonterminal - _values[t]

 _advantages[t] = last_lambda = delta + self.gamma *

self._lambda * nextnonterminal * last_lambda

 _returns = _advantages + _values

 �return map(swap_flatten_axes, (_observations, _actions,

_returns, _values))

In the code, we move to the end of the function, where we calculate the

delta, or the difference between each individual step with respect to the

rewards, lambda, returns, etc. This finally leads us to the “train_model()”

function, shown as follows:

 model = ActorCriticModel(policy=policy,

 obsevration_space=observation_space,

 action_space=action_space,

 n_environments=n_environments,

n_steps=n+steps,

entropy_coefficient=entropy_coefficient,

value_coefficient=value_coefficient,

max_grad_norm=max_grad_norm)

 model.load("./models/260/model.ckpt")

 runner = Runner(environment,

 model=model,

 n_steps=n_steps,

 n_timesteps=n_timesteps,

Chapter 2 Reinforcement Learning Algorithms

47

 gamma=gamma,

 _lambda=_lambda)

 (code redacted please see github)

As readers have been introduced to these functions, they are now

instantiated given the hyperparameters we define at the header of the file

as well as within the train_model() function. From this point, the processes

that readers see should mirror that of the prior example, with respect

to training the model. Now that we have given a proper overview of this

example, let us discuss the challenges of trying to train a model like this

and results that we observed.

�Working with a More Difficult
Reinforcement Learning Challenge
The cart pole problem and other classic control problems within RL

are relatively easy in that it will not take an inordinate amount of time

for whatever method you choose to converge on an optimal solution.

For more abstract problems, however, particularly those similar to this

example, training times can increase exponentially for the task. For

example, there are implementations of A2C and A3C that have been

applied to Sonic the Hedgehog that still cannot complete a level after 10

hours. Although there are complexities in that example that aren’t present

here in Super Mario Bros., the same point should be taken to heart. As

such, for a problem like this, we are going to need to use a cloud solution.

While we will go over AWS and how to use it at a later point, I think it is

important for readers to learn other frameworks as well. Because of this,

we will work with Google Cloud. As an added bonus, they still give free

credits to new users, which will make using this code significantly easier.

Any data scientist or machine learning engineer will reach a point

where the solutions they want to make should be productionized and

Chapter 2 Reinforcement Learning Algorithms

48

experimented with utilizing cloud resources. AWS and Google Cloud are

two solutions that readers should become familiar with not only will come

across a point at which it makes sense to start putting code in production.

An example of the Google Cloud Dashboard is given as such in Figure 2-9.

Readers should expect when clicking the SSH icon that they will load

a (assumedly here Linux) terminal which will require some standard

installation (installing Git, different python packages, etc.). Nothing that

the user does here will be terribly different from what they have done

on their local machine; however, there will be some syntax differences

assuming that you are utilizing Linux.

The important part from this section is to understand that you should
be training solutions such as these on Cloud Resources AND NOT on
your local machine.

Figure 2-9.  Example of Google Cloud Dashboard

Chapter 2 Reinforcement Learning Algorithms

49

Let us now look at the main function which will actually run

the game itself:

def play_super_mario(policy_model=ActorCriticModel,

environment=environment):

 (code redacted, please see github)

 observations = environment.reset()

 score, n_step, done = 0, 0, False

 while done == False:

 actions, values = model.step(observations)

 import pdb; pdb.set_trace()

 for action in actions:

 �observations, rewards, done, info =

environment.step(action)

 score += rewards

 environment.render()

 n_step += 1

 print('Step: %s \nScore: %s '%(n_step, score))

 environment.close()

With this last piece of code, we have reviewed all of the necessary

classes. The final part that we should discuss here is implementing the

training processes smoothly. For this, I recommend that users familiarize

themselves with docker.

Chapter 2 Reinforcement Learning Algorithms

50

�Dockerizing Reinforcement Learning
Experiments
When you are training a reinforcement learning agent, you will likely not

want to sit and stare at the agent familiarizing itself with the environment

via optimizing its policy and you will most certainly still need your

computer in the many hours that you are utilizing to train it. As such, this

is why we utilize cloud resources. However, just running your application

on a cloud environment will not be sufficient. On AWS or Google Cloud,

if you do not run the process in the background, the moment at which the

connection is lost, either because your computer died, froze, etc., you will

lose all of your progress and have to start either from the last checkpoint

or from the beginning depending on whether you have modified the code

to save along certain checkpoints. As such, it is important that you utilize

docker containers.

Docker containers are an interesting solution that allow you to create

a virtual environment of the application that you are running from a

terminal. Simply stated, you can create a virtual “instance” that quickly

spins up your application and runs it from this virtual environment.

Another added benefit is that docker includes several commands that can

help you by running a process such as this and restarting it in case it stops.

In the context of the task we are performing here, we can terminate the

process once we have felt we have trained our agent long enough, check

the progress of our agent afterward, and then return to training if we deem

necessary. First, let us look at an example Docker file.

Chapter 2 Reinforcement Learning Algorithms

51

Figure 2-10 is a dummy Docker file where we see three commands

that we will review. Specifically, they are “FROM,” “COPY,” and “RUN.”

“FROM” is what we define the version of python in which we would like

this container to run. Although there are some examples in this book that

utilize python2, all should be compatible with python3, and python2 will

be not supported past 2020. Moving forward, “COPY” indicates the specific

files within a repository that we want to use. Finally, we get to “RUN”

where we specifically install the python packages that we need.

It is important to note that you must indicate all of the necessary
files, repositories, and python modules in your docker file when
you instantiate a new container. If you do not do this, your docker
container will not be able to execute the code.

We typically create a container with the following command:

"sudo docker –t build . [container name] . "

Figure 2-10.  Example Docker File

Chapter 2 Reinforcement Learning Algorithms

52

Assuming docker is installed and no files that we are copying are

missing, this should create a docker container by the name specified. After

this step, users are suggested to run the following command to commence

the file.

"sudo docker run --dit --restart-unless-stopped python3 –m

path.to.file"

�Results of the Experiment
This was largely done for illustrative purposes; however, it is useful

when working through more difficult reinforcement learning problems

to highlight this point – you must train your agent for a large amount
of time. Unlike some of the more vanilla machine learning examples,

and more similar to difficult natural language processing problems that

utilize deep learning, training will take a very long time to be effective.

In this particular instance, the agent usually runs out of time because

it gets stuck on some obstacle like a pipe relatively early on, or it gets

unlucky and gets killed relatively quickly by an enemy combatant like

a goomba. When the agent is trained for 5 hours, we observe generally

that it performs significantly better, most specifically notified by the fact

that it is now able to avoid dying, by and large, from any of the enemies

in the space. However, it does get caught on obstacles and is not likely to

backtrack to find alternative paths forward should it get stuck. The most

successful agents were those trained for above 12 hours; however, this

solution generally is not finished nor is it necessarily perfect. Much of the

success of the agent often seems to be determined by the actions that it

takes at critical points, particularly timing jumps properly, and it tends to

avoid killing enemies as much as it prefers trying to not fall into the holes

in the level. On some occasions, this allows Mario to win; however, what is

important to note is that this is one of the more simple levels that the game

features.

Chapter 2 Reinforcement Learning Algorithms

53

�Conclusion
Readers after this chapter should feel comfortable in applying some

basic and one more advanced type of Reinforcement Learning algorithm

which are based on episodic and temporal difference methods. The key

takeaways from the chapter are the following:

•	 Understand the problem type you are tackling –

Similar to most machine learning problems, there

are different models to use for different types of data.

Are you dealing with a large state space? Is your task

episodic? If not, do you realistically want/need to base

the learning of the algorithm on more granular steps?

Take time to think about these before you approach the

solutions.

•	 Training RL solutions on difficult problems is time-
consuming, so train on cloud resources – Similar to

some advanced NLP problems, readers will observe

that local machines are not the place to be training

models on. Although it obviously makes sense to be

writing most of the code from your local machine, seek

to utilize these somewhere else.

With the first type of algorithms now completed, we will move forward

to tackling different value-based methods such as Q learning and Deep Q

Learning. In the upcoming chapter, we will again take the same precedent

of dealing with a more simple problem and then moving to a more

complex problem with a considerably larger environment.

Chapter 2 Reinforcement Learning Algorithms

55© Taweh Beysolow II 2019
T. Beysolow II, Applied Reinforcement Learning with Python,
https://doi.org/10.1007/978-1-4842-5127-0_3

CHAPTER 3

Reinforcement
Learning Algorithms:
Q Learning and Its
Variants
With the preliminary discussion on policy gradients and Actor-Critic

Models finished, we can now discuss alternative deep learning algorithms

that readers might find useful. Specifically, we will discuss Q learning,

Deep Q Learning, as well as Deep Deterministic Policy Gradients. Once

we have covered these, we will be well versed enough to start dealing with

more abstract problems that are more domain specific that will teach the

user about how to approach reinforcement learning to different tasks.

�Q Learning
Q learning is a part of a family of model-free learning algorithms which

learns a policy by looking at all of the possible actions and evaluating

each of them. In this algorithm, there are two matrices which we will

frequently reference: the Q matrix and the R matrix. The former represents

the algorithm’s namesake and contains the accumulated knowledge on

the environment in which we are implementing a policy. All of the entries

56

in this matrix are initialized at 0 and the goal is to maximize the reward

yielded. Upon each step in the environment, the Q matrix is updated. The

R matrix is the environment where each row represents a state and the

columns represent the awards for moving to another state. The structure of

this matrix is similar to a correlation matrix, where each row and column

index mirror one another. We have visualizations of both a Q and an R

matrix in Figures 3-1 and 3-2.

Figure 3-1.  Visualization of Q Table

Figure 3-2.  Visualization of R Table

Chapter 3 Reinforcement Learning Algorithms: Q Learning and Its Variants

57

The agent can see the R table with respect to the immediate actions it

can take within it, but cannot see anything else. Because of this limitation,

this is precisely where the Q table becomes important. The Q table as

mentioned earlier contains all of the accumulated information about the

environment that it populates over a given period. In some sense, we can

think of the Q table as the map and the R table as the world. Specifically

how the Q table is updated is given by the following:

Q s a Q s a r s a Q s a Q s at t t t t t t t t t, , , , ,() = () + () + (){ }() - (+ +: .maxa g 1 1))é
ë

ù
û

where Q(st  , at) = the cell entry, α = learning rate, γ = discount factor,

max{Q(st + 1 , at + 1)}) = maximum Q table value.

�Temporal Difference (TD) Learning
In the introduction chapter, we briefly touched upon the topic of Markov

decision process. To reiterate more specifically, MDPs refer to events

that are partially random but also are dependent upon or in control of a

decision maker. We define a MDP as the following 4-tuple:

S A P Ra a, , ,()

where S = set representing the states, A = set representing the allowable

actions, Pa = probability that action a in state s at time t results in state sʹ at

time t + 1 , Ra= immediate reward received after transitioning from state s

to state sʹ due to action a.

As a reminder, Figure 3-3 is an example of the Markov decision-making

process.

Chapter 3 Reinforcement Learning Algorithms: Q Learning and Its Variants

58

As we have stated earlier, most of reinforcement learning revolves

around states from which we can perform actions that yield a reward as

well. The goal we are trying to reach is choosing the optimal policy for the

decision maker that maximizes the reward yielded. We briefly brought up

temporal difference learning in the introduction, but now is an appropriate

time to discuss this at length.

TD learning is broadly described as a method to predict a quantity that

depends on the future values of a specific signal. It refers to the “temporal

differences” in predictions over varying timesteps. TD learning is designed

such that the prediction at a current timestep is updated to so that the

following prediction for the next timestep is correct. Q learning itself is

an example of TD learning. One way in which we can solve a TD learning

problem, specifically as it manifests here, is the epsilon-greedy algorithm.

Figure 3-3.  Markov Decision-Making Process

Chapter 3 Reinforcement Learning Algorithms: Q Learning and Its Variants

59

�Epsilon-Greedy Algorithm
Eventually, after a large amount of iterations, the Q table is good enough to

be utilized directly by an agent. To get to this point, we want the Q learning

algorithm to utilize the information in the table less than it explores. This is

what at large is described as the exploration-exploitation trade-off, and it is

controlled by the epsilon parameter. The key here is that the first possible

path that might be utilized to reach a solution is not guaranteed to be the

best path. With this being stated, it is unlikely that it will always be the case

that if we keep searching, we will find a better solution than the current

one, and therefore we abstain from solving the problem. To mitigate this

issue, it is recommended to use the epsilon-greedy algorithm.

Epsilon-greedy algorithm is within the family of the multi-armed

bandit problem. This is described as a problem where we must choose

between a variety of options with the end goal of maximizing a reward. The

classic example to illustrate this problem is to imagine a casino where we

have four machines, each with different unknown reward probabilities.

We describe a Bernoulli multi-armed bandit as a set actions and rewards

represented respectively in the tuple <A, R> where there are K machines

with reward probabilities {θ1, …, θK}. Each action corresponds to an

interaction with a respective slot machine, and rewards are stochastic

in that they will return with a probability of Q(at) or 0 otherwise. The

expected reward is represented as the following equation:

Q a r a k kk k k k() = [] = Î ¼{ } | , ,q , 1

And our goal is to maximize the cumulative reward by choosing the

optimal actions, where the optimal reward probability and loss functions

are given respectively by the following equations:

q q* *

Î £ £
= () = () =Q a Q a

a A i K imax max
1

Chapter 3 Reinforcement Learning Algorithms: Q Learning and Its Variants

60

L Q aT
t

T

t= - ()()é

ë
ê

ù

û
ú

=

*å
1

q

Although there are multiple ways to solve the multi-armed bandit

problem, we will focus here on the strategy. This is an algorithm that

estimates the quality of the action via the following equation:

where Nt(a) = number of times action a has been taken, = binary

indicator function.

If ϵ is small, then we will explore our immediate environment.

However, otherwise, we will utilize the best possible action that we know at

this moment. To illustrate the entirety of the Q learning algorithm, we will

learn to play a game called “Frozen Lake.”

�Frozen Lake Solved with Q Learning
Frozen Lake is a game provided in Gym in which the player is trying to

train an agent to walk across a lake from a starting point to another end

point on the lake. However, not all of the patches of ice are frozen, in which

stepping on this would cause us to lose the game. We do not receive

any rewards except for reaching the goal. Readers can imagine the

environment looking like the following image (Figure 3-4).

Chapter 3 Reinforcement Learning Algorithms: Q Learning and Its Variants

61

Similar to most of the other files we have written, we started by

defining the parameters we can use later as well as the environment. The

two main functions populate_q_matrix() and play_frozen_lake() contain

within them many of the helper functions defined earlier. Let’s start first by

walking through the function that populates the Q matrix.

def populate_q_table(render=False, n_episodes=n_episodes):

(documentation redacted, please see github)

 for episode in range(n_episodes):

 prior_state = environment.reset()

 _ = 0

 while _ < max_steps:

 if render == True: environment.render()

 action = exploit_explore(prior_state)

Figure 3-4.  Frozen Lake Environment

Chapter 3 Reinforcement Learning Algorithms: Q Learning and Its Variants

62

 observation, reward, done, info = �environment.

step(action)

 update_q_matrix(prior_state=prior_state,

 observation=observation,

 reward=reward,

 action=action)

 (CODE TO BE CONTINUED)

Walking through the code up to the second helper function, update_q_

matrix(), we see that we define a number of episodes over which we will

populate the Q table. Readers can add more or less episodes and see how

the performance changes, but here we have chosen 10,000 episodes. We

now come to our first helper function, exploit_explore(). This self-evidently

is the algorithm which performs the epsilon-greedy exploration algorithm

to determine what of those two actions we should take. The following

function describes this in detail.

def exploit_explore(prior_state, epsilon=epsilon):

(documentation redacted, please read github)

 if np.random.uniform(0, 1) < epsilon:

 return environment.action_space.sample()

 else:

 return np.argmax(Q_matrix[prior_state, :])

As readers can see, we only explore with a random action in the

instance that the value we randomly pull from the uniform distribution is

0. Otherwise, we choose the best possible action we are aware of given that

state. Moving forward in the body of the larger function, continue as we

have in prior examples by having the agent perform an action within the

environment. This yields the difference; however, now we must update the

Q matrix.

Chapter 3 Reinforcement Learning Algorithms: Q Learning and Its Variants

63

def update_q_matrix(prior_state, observation , reward, action):

prediction = Q_matrix[prior_state, action]

 �actual_label = reward + gamma * np.max(Q_

matrix[observation, :])

 �Q_matrix[prior_state, action] = Q_matrix[prior_state,

action] + learning_rate*(actual_label - prediction)

Per the earlier equation, we update the Q matrix’s entry where each

column represents an action to be taken and each row represents a

different state. We continue this process within each episode until we

either hit the maximum number of steps we are allowed to take or we fall

through the ice. Once we have reached the maximum number of episodes,

we are ready to play the game using our Q table. Readers should observe

the game when it is running in the terminal to appear as in Figure 3-5.

Chapter 3 Reinforcement Learning Algorithms: Q Learning and Its Variants

64

The terminal will output messages when you win or lose during a

given episode. We generally observe over multiple experiments using the

parameters provided that the agent will generally win two to three times

over 10 episodes and will reach a solution in approximately 20–30 steps.

The main advantage to Q learning to some degree is that it does not

require a model and that the algorithm is fairly transparent. It is easy to

explain why the agent at a given state in time will choose an action. With

that being said, the main drawback to this is that the experience necessary

to gain knowledge of what to do at a given state is very computationally

Figure 3-5.  Frozen Lake Game

Chapter 3 Reinforcement Learning Algorithms: Q Learning and Its Variants

65

expensive when we are dealing with very large environments if we are

to sufficiently fill the Q matrix with information. While this frozen lake

example is fairly constrained, environments such as more complex video

games will likely take an exceptionally long time to get a good Q table.

To overcome this limitation, Deep Q Learning was designed.

�Deep Q Learning
Deep Q Learning is fairly straightforward coming from Q learning In

that the only real difference between the two methods is that DQL

approximates the values in the Q table rather than trying to populate them

manually. Precisely how this is done is the linkage between the epsilon-

greedy search (or an alternative algorithm) and the outcome of the actions.

The epsilon-greedy search algorithm solves for how do we decide whether

to exploit or explore and we in turn update the Q matrix based on the

value of the actions at that state. In this sense, we can see that we want to

minimize the loss between reaching our goal and the action we take. In

this sense, we now have something to utilize gradient descent on, which is

represented as the following equation:

Li i a i iy Q s aq qm() = - ()()é
ë

ù
û

 ~ ,, ;
2

y r Q s a S s A ai a a i t t: [max~= ¢ ¢+ () = =¢ ¢ - m g q, ; | ,]1

where μ = behavior policy, θ = neural network parameters.

Both the target label and the Q matrix are predicted by two separate

neural networks. The target network shares the weights and biases of the

Q network, but they are updated after the Q network. Moving forward,

however, let us discuss the importance of experience replay and how

we utilize it here. Neural networks will overwrite the weights if we

introduce completely new data in the context of reinforcement learning.

Chapter 3 Reinforcement Learning Algorithms: Q Learning and Its Variants

66

As such, this is why often there are different models that are trained for

different purposes. Experience replay is how we make usage of observed

experiences by storing them and then this helps to reduce the correlation

we might observe between experiences. Practically speaking, we save in

memory the tuple we introduced in the beginning of the chapter. During

training, we will calculate the target label with the tuple and then apply

gradient descent such that we have weights and biases that will generalize

well on the entire environment. Moving forward, however, let us now

try to work through a problem using Deep Q Learning and see how the

complexity of our problem has changed significantly.

�Playing Doom with Deep Q Learning
One of the classic examples for utilizing DQL is the original Doom video

game, shown in Figure 3-6, whose environment is also an excellent one

in which to test various machine learning algorithms. Doom is a first

person shooter in which the player must navigate a three-dimensional

environment in which they are fighting against enemy combatants.

Because this is an older 3D game, the player moves around in the

environment in the same way many of our theoretical agents do in a Q

matrix. This will be the first continuous control problem in which we apply

Reinforcement Learning.

Chapter 3 Reinforcement Learning Algorithms: Q Learning and Its Variants

67

Simply stated, we distinguish continuous control systems from

discrete control by systems in which the variables and parameters would

be continuous in the former and discrete in the latter. An example of a

continuous process in the context of reinforcement learning would be

driving a car or teaching a robot to walk. An example of discrete control

processes would be the first problem we dealt with, the cart pole, as well

as other problems within the “classic control” problems such as swinging a

pendulum. Although there are plenty of discrete tasks worth analyzing for

the sake of understanding the algorithms, many tasks that would be useful

to implement with reinforcement learning are continuous. This along with

the massive size of the state space makes this an excellent candidate for

Deep Q Learning. We will attack this problem by looking at the difference

in a simple level vs. a more difficult level and seeing the difference in

algorithm performance.

Specific to the game itself, the goal is fairly straightforward. We must

complete the level without dying which ostensibly requires killing enemy

Figure 3-6.  An Example of a Level Within Doom

Chapter 3 Reinforcement Learning Algorithms: Q Learning and Its Variants

68

combatants along our way to the end of the level. Most of the enemies

will retaliate preemptively, so the algorithm will be mainly focused upon

training on how to react based on this. Broadly speaking, the two major

processes we will be performing via this algorithm are (1) sampling

the environment and storing the experiences in the MDP tuple and (2)

selecting some of these to utilize as batch training examples. Let us begin

by first discussing how we will preprocess our data for this model in

addition to what type of model architecture we will utilize.

class DeepQNetwork():

 �def __init__(self, n_units, n_classes, n_filters, stride,

kernel, state_size, action_size, learning_rate):

 (code redacted, please see github)

 �self.input_matrix = tf.placeholder(tf.float32, [None,

*state_size])

 self.actions = tf.placeholder(tf.float32, [None])

 �self.target_Q = tf.placeholder(tf.float32, [None,

*state_size])

 self.network1 = convolution_layer(inputs=self.input_matrix,

 filters=self.n_filters,

 kernel_size=self.kernel,

 strides=self.stride,

 activation='elu')

(code redacted please see github)

Similar to prior Tensorflow graphs that we have defined as graphs,

we will begin by defining a couple of particular attributes. These will be

utilized later in the “play_doom()” function in doom_example.py, but

we will address those later. Moving forward, we can see that similar to

the example we utilized in Super Mario Bros, we will want to use a LeNet

Architecture, except in this instance, we will be utilizing a layer that

accepts four dimensions since we are attacking the frames. We similarly

Chapter 3 Reinforcement Learning Algorithms: Q Learning and Its Variants

69

eventually flatten the feature maps into an array which we then will output

via a fully connected softmax layer. From this softmax layer, we will sample

our actions during training. Figure 3-7 shows an example of the model

architecture we will be utilizing for our Deep Q Network.

Moving backward to discussing the input data, in the prior example we

did not stack the frames and instead passed the current and prior states

as they were, being reformatted matrices of the input data. The reasoning

behind why this is important, particularly in a three-dimensional

environment is because it gives the Deep Q Network an understanding of

the motion that the agent is inducing. This method was proposed by Deep

Mind. We preprocess and stack the frames via the following function:

def preprocess_frame(frame):

 cropped_frame = frame[30:-10,30:-30]

 normalized_frame = cropped_frame/float(255)

 �preprocessed_frame = transform.resize(normalized_frame,

[84,84])

 return preprocessed_frame

We first begin by utilizing a grayscaled image, which is given to us in

this form by the vizdoom library thankfully. In the event that this was not

grayscale, users should utilize a library such as OpenCV to perform this

preprocessing. Moving forward, we will scale the pixel values again by 255

Figure 3-7.  Example Architecture for Deep Q Network

Chapter 3 Reinforcement Learning Algorithms: Q Learning and Its Variants

70

as we did in the Super Mario example and for the same reasoning. One

minor difference however, is that we will be cropping out the top of the

frame in this initial example, since the ceiling in Doom is just for atmospheric

purposes and doesn’t contain anything worth evaluating. We utilize the

preceding function here when we are stacking the frames:

def stack_frames(stacked_frames, state, new_episode, stack_size=4):

 frame = preprocess_frame(state)

 if new_episode == True:

 �stacked_frames = deque([np.zeros((84,84), dtype=np.int)

for i in range(stack_size)], maxlen=4)

 for i in range(4):

 stacked_frames.append(frame)

 stacked_state = np.stack(stacked_frames, axis=2)

 else:

 stacked_frames.append(frame)

 stacked_state = np.stack(stacked_frames, axis=2)

 return stacked_state, stacked_frames

The important takeaway from this function, separate from the

functions that transform the frames into four stacks, is how precisely this

happens. When this function is called for the first time, we take the first

four frames. Moving forward, we append the newest frame while deleting

the last, such that this process should represent a first in last out (FILO)

process. Something to keep in mind, however, is that this process isn’t

very realistic in the sense that humans would not see multiple frames

staggered, but rather would see them all at once. In addition to this, this

makes training significantly more difficult because of the memory that

is used storing these stacked images. Users should keep this in mind

Chapter 3 Reinforcement Learning Algorithms: Q Learning and Its Variants

71

when we are working through different examples in the coming chapters.

Moving forward, we will be utilizing a slightly more elaborate greedy

epsilon strategy, in which we will also be utilizing a decay rate as shown in

the following function:

def exploit_explore(session, model, explore_start, explore_

stop, decay_rate, decay_step, state, actions):

 exp_exp_tradeoff = np.random.rand()

 �explore_probability = explore_stop + (explore_start -

explore_stop) * np.exp(-decay_rate * decay_step)

 if (explore_probability > exp_exp_tradeoff):

 action = random.choice(possible_actions)

 else:

 �Qs = session.run(model.output, feed_dict = {model.

input_matrix: state.reshape((1, * state.shape))})

 choice = np.argmax(Qs)

 action = possible_actions[int(choice)]

The idea behind this is greedy epsilon strategy is essentially the same

as we saw in the original Q learning example, except that the decay is

exponential in that it becomes increasingly likely that we will explore less

over time forcing the algorithm to utilize its accumulated knowledge. Now

with the helper functions explained, let us now walk through the function

that will actually be utilized to train the model. Without further ado, let

us observe the results from training the model on this level. We will then

move to a different level and see how the model performs on.

�Simple Doom Level
In this scenario, the player is in a simple environment in which they

can move left, right, and/or shoot at the enemy combatant. This enemy

combatant will not shoot back and simply moves occasionally to the left

Chapter 3 Reinforcement Learning Algorithms: Q Learning and Its Variants

72

Figure 3-9.  Example of Simple Doom Environment

Figure 3-8.  Screenshot of Training Mode

or the right. Readers when running the code should expect an output and

screenplay to look as shown in Figures 3-8 and 3-9.

Chapter 3 Reinforcement Learning Algorithms: Q Learning and Its Variants

73

�Training and Performance
Figure 3-10 shows the results from training the Q matrix over various

episodes as well as the out-of-sample results.

Readers should be aware that tasks like these, as we have spoken about

due to the preprocessing and computation being utilized, are considerably

memory intensive. In addition to this, there are times where the neural

network does not learn appropriately the right course of action to take as it

gets stuck in local optima. Although the parameters listed have in general

yielded out-of-sample solutions that are acceptable, there were also

times where this neural network did not perform well. This is one of the

limitations.

Figure 3-10.  Deep Q Network Scores During Training

Chapter 3 Reinforcement Learning Algorithms: Q Learning and Its Variants

74

�Limitations of Deep Q Learning
Deep Q Learning, as we have shown earlier, is not without its faults.

Separate from this example though, where do most of these inefficiencies

tend to lie? Sebastian Thrun and Anton Schwartz in 1993 investigated this

more specifically in their paper Issues in Using Function Approximation for

Reinforcement Learning. What they found was that Deep Q Networks often

learned very high action values because of overestimation. This, by design,

is due to the target label formula given by the following:

y r Q s ai a a i: max~= ¢ ¢+ ()é
ë

ù
û¢ ¢ - p g q, ; 1

In this equation, we can see that we always choose the maximum

known value at that time, which can preference our network to learn

these values at stages where they might be unrealistically high. This

is specifically how function approximation can cause overestimation.

Overestimation, as it can happen here, leads to poor policies and tends to

induce bias within the model. As this manifested in the Doom example,

this is exemplified by the fact that the agent oftentimes feels compelled to

shoot regardless of its position relative to the enemy. How precisely can

this be fixed?

�Double Q Learning and Double Deep
Q Networks
As highlighted before in the prior equation, the max operator uses

the same values to select and evaluate an action given the state of the

environment. Precisely when we separate this into two separate processes

(selection and evaluation) do we get Double Q Learning. Double Q

Learning utilizes two value functions and each of which have two

respective weight sets. One of the weight sets is utilized for determining

Chapter 3 Reinforcement Learning Algorithms: Q Learning and Its Variants

75

the greedy-epsilon exploit or explore trade-off problem and the other

for determining the value of a given action. We then rewrite the target

approximation as the following:

Y R Q S Q S at
Q

t t a t t t= + ()()+ + +1 1 1g q q, , ; ;arg max

With this now explained, we can discuss Double Q Networks and how

they are being utilized to overcome the shortcomings of Deep Q Networks.

Rather than add additional models, we instead utilize the target network

to estimate the value while utilizing the online network to evaluate the

explore-exploit decision-making process. The target function for the

double Q network is the following:

Y R Q S Q S at
DoubleQN

t t a t t tº + ()()+ + +
-

1 1 1g q q, , ; ,arg max

�Conclusion
With both examples of Q learning and Deep Q Learning finished, we

advise the reader to try applying these algorithms in a variety of contexts.

Where necessary, they can change parameters and fork/change existing

code and models. Regardless, what I would suggest to readers to keep in

mind moving forward is the following:

•	 Q learning is straightforward and easy to explain –

The benefit to this algorithm is that it is easy to

understand why the Q values are inputted as such.

For tasks where implementing algorithms requires

transparency, it is not unwise to consider something like

this for where it will do.

Chapter 3 Reinforcement Learning Algorithms: Q Learning and Its Variants

76

•	 Q learning has limitations on large state
spaces! – While the prior comment holds for simple

problems, it is important to realize in instances like

the Doom example and more complex environments,

Vanilla Q Learning will take an exhaustive amount of

time to get through.

•	 Deep Q Learning still can fall in local optima! – Like

other reinforcement learning algorithms, DQN can

still find locally optimal policies but not the globally

optimal policy. Finding this global optimum can be

exhaustive from a training standpoint.

•	 Try implementing Double Q Learning and
Double Deep Q Networks! – The limitations of

Q learning and DQNs have been overcome by

increasingly more advanced techniques and at a

rapid pace. This starting point should allow you to try

implementing state-of-the-art algorithms from scratch.

With these examples finished, let’s move on to some other

reinforcement learning algorithms that we have not covered yet and

discuss these in depth.

Chapter 3 Reinforcement Learning Algorithms: Q Learning and Its Variants

77© Taweh Beysolow II 2019
T. Beysolow II, Applied Reinforcement Learning with Python,
https://doi.org/10.1007/978-1-4842-5127-0_4

CHAPTER 4

Market Making via
Reinforcement
Learning
Separate from just attacking some of the standard problems in

reinforcement learning as they are found in many books as an example,

it’s good to look at fields where the answers are either not as objective

nor completely solved. One of the best examples of this in finance,

specifically for reinforcement learning, is market making. We will discuss

the discipline itself, present some baseline method that isn’t based on

machine learning, and then test several reinforcement learning–based

methods.

�What Is Market Making?
In financial markets, there is constantly a need for liquidity among people

that utilize exchanges. It is likely impossible that at any one given moment

that every person trying to sell an asset’s orders match precisely with

the people who want to buy. As such, market makers play a vital role in

facilitating the execution of orders from people who typically want to take

78

a position in a financial instrument (long or short) for a varying duration of

time lengths. Typically, market making is described as one of the few ways

that people in financial markets can consistently make money in financial

markets as opposed to betting models which take riskier bets but ones

conditionally with higher payoffs. Let’s now try and understand what the

data we’re working with is and what we can expect. Figure 4-1 is a sample

image of an order book with associated orders.

Chapter 4 Market Making via Reinforcement Learning

79

Figure 4-1 is an example of orders that are sitting on both sides of

the order book, representing the bid as well as the ask. When someone

sends an order to an exchange and uses a limit order, the quantity they

Figure 4-1.  Example Order Book

Chapter 4 Market Making via Reinforcement Learning

80

are trying to sell sits on the order book until the order is filled. While the

fill algorithms exclusive to the exchange can vary from one to another,

they usually seek to fill orders in which they are received such that the

most recent order is the last order to be filled. The benefit of utilizing

limit orders is that they can significantly reduce what is known as “market

impact.” To state it simply, whenever someone wants to buy large amounts

of something, it signals to the rest of the market that there is significant

demand. This means that we can affect our own ability to get the best

possible price and fill our own orders. Because of this, traders often scatter

their limit orders as to obscure their intentions as best as possible.

To give a more concrete example of market making, let us imagine

that we are some financial exchange that has a multitude of customers

that typically want to exchange every large order. However, not all of

these orders are evenly distributed such that every person who wants to

buy has another large customer who wants to sell. We therefore decide

to incentivize market makers, typically by offering very preferential fee

rates, to provide liquidity such that the orders of these large customers can

be facilitated. The better that an exchange is at attracting market makers

such that they bring more liquidity, typically the better the exchange is for

people who want to trade, particularly institutional buyers.

The basic idea of market making is that someone is generally willing

to buy and/or sell an instrument at any given price, such that over time

their strategy produces returns for them. The main attractive aspect of

market making is that once a successful strategy has been identified that

is scalable, it is typically valid for significantly longer periods of time than

traditional directional models that hedge funds and other trading desks

might take. In addition to this, the risk associated with market making

is lower. With this being said, market making’s primary difficulty in a

practical sense is that depending on the market, it can require a large

amount of capital to facilitate making a market. With that being stated,

Chapter 4 Market Making via Reinforcement Learning

81

however, we are going to utilize reinforcement learning to try and develop

a more intuitive way of developing a strategy rather than trying to perform

more traditional quantitative finance research.

�Trading Gym
Similar to the OpenAI gym, and the derivatives of that package that we

have utilized to play various video games such as Super Mario Bros. and

Doom, readers here will be utilizing Trading Gym. It is an open source

project whose goal is to make applying reinforcement learning algorithms

in the context of trading easy. In Figure 4-2, you can see the plot that

should typically display itself when the environment is rendering.

Figure 4-2.  Trading Gym Visualization

In this environment, readers will typically have three options available

to them:

	 1.	 Buy the instrument

	 2.	 Sell the instrument

	 3.	 Hold a current position

Chapter 4 Market Making via Reinforcement Learning

82

Trading Gym typically allows you to work with one (or more) products/

financial instruments where the format of the data is the (bid_product1,

ask_product1, bid_product2, ask_product2). We define the bid as the best

possible price at which an individual can buy a product and the ask as the

best possible price at which it can be sold. We will walk through with the

reader how to import their own order book data to the environment, but

prior to that, let us first discuss the problem we are trying to solve and look

at a more deterministic method of solving the problem.

�Why Reinforcement Learning for This
Problem?
Although it is not readily apparent from trading gym, all of market making

requires the use of limit orders to be effective. The downside to market

orders, because the liquidity needed to fill an order is almost always

guaranteed (below certain allocations), is that exchanges typically charge

a sizeable fee. Because of this, the only way to utilize a market making

strategy is to place orders on the limit order book and allow for them to be

filled. With that being stated, this then introduces several problems such as

the following:

	 1.	 What price should I buy?

	 2.	 What price should I sell?

	 3.	 What price should I hold?

All of these questions are not easily answered within the context

of machine learning. Specifically, the space that we are acting in is

continuous. As we stated earlier, the market is continuously changing and

our actions on the market itself can make it more difficult to fill, or not

fill, our orders. As such, a vanilla machine learning approach doesn’t take

these environment factors into consideration unless we included them

Chapter 4 Market Making via Reinforcement Learning

83

as features. Even then, it would be difficult to try and encode some of

these aspects unless we have done a significant amount of research on the

market beforehand. Secondarily, most machine learning methods would

like be invalid, as this is a time series task. The only appropriate method

would be a recurrent neural network (RNN), and particularly because

of the granularity of this task, we would have to predict a considerable

number of sequences ahead. This would result in a model where we

held positions for considerably longer on average than we would like to

in market making context. We want agility and flexibility, whereas using

a machine learning approach would likely force us to hold positions for

predetermined periods of time, rather than when it was most advantageous

for us to exit positions based on the market context. All of these reasons

justify a reinforcement learning–based approach. Let’s move to describing

the code and how we can create a reasonable example for us to move on.

What follows is an example of the code that will execute the function:

memory = Memory(max_size=memory_size)

environment = SpreadTrading(spread_coefficients=[1],

 data_generator=generator,

 trading_fee=trading_fee,

 time_fee=time_fee,

history_length=history_length)

state_size = len(environment.reset())

Before we move further, there are a few important attributes that we

define for the SpreadTrading() class that we should walk through. Some

of these are fairly straightforward as in that all transactions in financial

markets cost money to enact on the average exchange, so we must set a fee.

In the first example we are utilizing, the exchange data will be synthesized,

and the second example will use real order book data. We will charge a

nominal fee that does not correspond to any particular exchange.

Chapter 4 Market Making via Reinforcement Learning

84

We set time_fee to 0 as there should be no cost. Most importantly, however,

we should discuss the DataGenerator class and what it does.

�Synthesizing Order Book Data
with Trading Gym
When working with trading gym, we have the option of either directly

working with order book data or synthesizing our own. To start, we will be

working with the WavySignal function, shown as follows:

class WavySignal(DataGenerator):

 def _generator(period_1, period_2, epsilon, ba_spread=0):

 i = 0

 while True:

 i += 1

 �bid_price = (1 - epsilon) * np.sin(2 * i * np.pi /

period_1) + \

 epsilon * np.sin(2 * i * np.pi / period_2)

 yield bid_price, bid_price + ba_spread

For those who are unfamiliar with generator functions, they are

typically used for instances in which we need to iterate through large

amounts of data which we have predetermined where it should be read

from; however, it would be too large to store this data in memory given the

nature of the application we are seeking. Instead, the objects are stored.

Moving forward, however, this generator will generate fake data based on

the preceding logic. With our generator working, we run the file using the

following command:

"pythonw –m chapter4.market_making_example"

Chapter 4 Market Making via Reinforcement Learning

85

We should observe an output similar to that in Figure 4-3.

On this particular example, we are utilizing a Deep Q Network to solve

this problem. As we can see, the DQN prefers to exploit the environment

more over time rather than emphasizing exploration. This, in addition to

accrued knowledge, is leading us to achieve higher scores than we were at

earlier episodes. Because this is synthesized data, there is no

necessary reason to continue analyzing this problem. This is helpful for

when the focus we place is training and selecting algorithms. However, in a

real-world context, we obviously want to solve problems in order to figure

out what would be a solution we could deploy in a real-life scenario.

�Generating Order Book Data with
Trading Gym
In this environment, we have two choices: (1) use fake data or (2) use real

market data. Besides familiarizing yourself with how the environment

works, I don’t think fake data has much utility. As such, we’re going to

start utilizing real data. This brings us to the CSVStreamer() class, which is

shown as follows:

class CSVStreamer(DataGenerator):

def _generator(filename, header=False):

 with open(filename, "r") as csvfile:

 reader = csv.reader(csvfile)

 if header:

Figure 4-3.  Output from WavySignal Data Generator

Chapter 4 Market Making via Reinforcement Learning

86

 next(reader, None)

 for row in reader:

 #assert len(row) % 2 == 0

 yield np.array(row, dtype=np.float)

(code redacted, please see tgym github!)

The CSVStreamer class essentially can be summarized by

the _generator() function, which we showed in the code previously.

It simply looks through each of the rows in the file assuming the first

column is the bid and second is the ask. Readers can download data from

LOBSTER that allows them to get different order book data or seek to

buy this data from a provider such as Bloomberg. This repository can be

accessed through the following URL: https://lobsterdata.com/.

This is obviously considerably expensive, so it should be reserved for

people who have large research budgets and/or work at an institution who

already has a Bloomberg terminal available. The “generator” variable we will

be using in this example is the CSVStreamer loading the order book data that

is included in this repository. Moving forward, let us begin by inspecting the

function that will be performing most of the computation in this example:

def train_model(model, environment):

(code redacted, please see github)

 while step < max_steps:

 step += 1; decay_step += 1

 action, explore_probability = exploit_explore(...)

 state, reward, done, info = environment.step(action)

Similar to the Doom example we showed in the prior chapter, most of

the code ends up being homogenous and similar. We are going to iterate

over the environment in the same fashion as earlier, except here, we will

be focusing on comparing the performance of multiple approaches and

evaluating which one we should use.

Chapter 4 Market Making via Reinforcement Learning

https://lobsterdata.com/

87

�Experimental Design
While it is rarely public precisely what market makers use as their

algorithms, generally speaking we want to utilize a simple set of rules.

The following algorithms will form our control group and a basic

understanding of why a rules-based system is superior to that of a

randomly generated set of choices. As with other experiments, the purpose

of the control group will allow us to compare the results of our models

against it to see if we have exceeded the benchmark set by the control

group. This new set of approaches will form the experimental group. We

will evaluate the success of the algorithms based on the following criteria:

•	 The overall reward

•	 The average reward over the entirety of the experiment

Without further ado, let us discuss how we arrive at the control group/

baseline algorithm. The following lists the requirements for our two

strategies:

Strategy 1 (Experiment group)

•	 Randomly select all options.

Strategy 2 (Control group)

•	 Randomly select buy, hold, sell.

•	 If the position is long, sell the asset.

•	 If the position is short, buy the asset.

•	 If we are holding a cash position, randomly select an

option.

Chapter 4 Market Making via Reinforcement Learning

88

The code for both strategies will be executed by the baseline_model()

function, which we show as follows:

def baseline_model(n_actions, info, random=True):

 if random == True:

 �action = np.random.choice(range(n_actions),

p=np.repeat(1/float(n_actions), 3))

 action = possible_actions[action]

 else:

 if len(info) == 0:

 �action = np.random.choice(range(n_actions),

p=np.repeat(1/float(n_actions), 3))

 action = possible_actions[action]

 elif info['action'] == 'sell':

 action = buy

 else:

 action = sell

 return action

Readers should be familiar by now with the “info” dictionary which

displays the information from the environment where there is something

relevant. In Trading Gym, the info dictionary displays the most recent

action. In the event that we are holding cash, the dictionary will be empty.

In the event that we are having a position open, it will read under the

“action” key, “buy” or “sell,” and sometimes the most recent profit from

the last action taken in the event that we were not holding cash. For the

preceding experiment, we will be repeating 100 individual trades over 1000

trials. In the end after we have trained our model, we will repeat this same

Chapter 4 Market Making via Reinforcement Learning

89

scheme and compare the results. The following results we yielded from our

experiment utilizing both of the respective strategies:

•	 Strategy 1 average reward – 30,890

•	 Strategy 2 average reward – 62,777

We have the following distribution and data associated with these

experiments (Figures 4-4 and 4-5).

Figure 4-4.  Distribution of Scores from Randomly Choosing
Actions

Chapter 4 Market Making via Reinforcement Learning

90

As the preceding experiment of 1000 trials shows, the rewards we

choose when there is some reasonable logic behind our decision-making

produces significantly better results compared to randomly choosing

actions over the entirety of these trials. As such, by that logic, we should

then be able to further increase our yields if we find a model that optimally

chooses these results compared with just taking a simple heuristic as we

did earlier. With this approach in mind, let us take our proposed solutions.

�RL Approach 1: Policy Gradients
While vanilla policy gradients do have their shortcomings, there are a

relatively restricted amount of decisions that would allow us to easily iterate

through the choices. The negative to this space is that we might not be

capturing the continuous element of our state space. With this being stated,

we have one immediate problem that we should address, which is the loss

function. When we first utilized policy gradients, we only had two classes

Figure 4-5.  Distribution of Scores from Algorithmically Choosing
Answers

Chapter 4 Market Making via Reinforcement Learning

91

and were operating in a discrete sample space. As such, we were able to

utilize a log-likelihood loss. In this instance, however, we have multiple

classes and are operating in a continuous space. These are challenges that

we should be aware of and whose results we will look at later.

For this example, we will be using the categorical cross-entropy loss

function as well as another custom loss function. The former is native to

Keras and is commonly used in classification schemes that include more

than two classes.

When we run the preceding designed experiment, the results in this

instance are uniformly quite bad. Across many different parameters and

different styles, it is largely inadvisable to utilize policy gradients. With that

in mind, let us try Deep Q Networks.

�RL Approach 2: Deep Q Network
For this example, Q learning is definitely an excellent choice in terms of

how we frame the problem, but Deep Q Learning ultimately should be

the method that we choose. The reasoning behind this is the fact that the

state space, particularly when considering the multitude of options, can

be quite large. When we are running this part of the function, we should

notice an output similar to Figure 4-6.

Figure 4-6.  Example Screenshot of Training DQL Model

Chapter 4 Market Making via Reinforcement Learning

92

During training of several iterations, given the amount of data we have,

I observed that training above one episode largely was inadvisable. With

that being said, the results achieved at times were very inconsistent. On

some iterations, I observed that the results were exceptionally good, some

outcomes of the model would choose no actions at all, and some actions.

On several occasions, I observed that the market making algorithm in this

context did perform considerably well in training but those results were

not stable nor consistent. Overwhelmingly, I noticed that my suggested

model performed poorly more often than not and often got stuck making

decisions that were undesirable. Moving forward however, let us look at the

results when we repeat the out-of-sample experiment trials (Figure 4-7).

The preceding results are not only substantially better than the

baseline but outstandingly outperform that of the policy gradient model,

making this the obvious choice of selection. With an average reward of

Figure 4-7.  Reward Score Distribution

Chapter 4 Market Making via Reinforcement Learning

93

34, 286, 348, this would absolutely be a feasible solution. As we can see in

the plot in Figure 4-7, our scores are desirable and that we seem to have a

bimodal distribution.

�Results and Discussion
After reviewing all of the results, it is reasonable to state that readers

should neither use the Deep Q Learning algorithm nor the policy

gradients. In summary, these are the reasons we are suggesting this:

•	 The baseline algorithm was exceeded – In order to

justify any experimental approach, we must exceed

the baseline. It is worthwhile to inspect whether we are

sampling the data appropriately, or if there is enough

data for this particular.

•	 Some algorithms lost money – The most objective

criticism of the first approach we have taken here is

the fact that it did not achieve its business objectives,

which was to produce a profitable strategy. Utilizing

this algorithm in a business context would be

inadvisable and ultimately beyond what theoretically

works, we must choose what actually does.

Possible solutions moving forward are to read some of the existing

literature that is in this space to try and remedy this. With that being

said, many papers that are publicly available similarly ran into issues

where algorithms either were momentarily profitable and ultimately

not profitable. Readers should also feel free to try and apply ActorCritic

methods in their own time moving forward, but should also be unafraid to

also try other existing solutions and try different parameters, fee structures,

and different constraints on the strategy that were not addressed here.

Chapter 4 Market Making via Reinforcement Learning

94

The difficulty of Reinforcement Learning research is that the reward

function design is an abstract process, but with that being said a critical

component to the design of good experiments.

�Conclusion
With the following example complete, we now have reached the end of

our first chapter in which we tackle reinforcement learning problems from

scratch and try and improve upon existing methods. Some key takeaways

from this chapter are the difficulties in trying to create a deployable

solution, but proposing to the reader a framework and showing how

we successively reached better results in sample each time suggested

that we are getting closer to the answer. Prior to this point, many of the

problems we have tackled have been relatively straightforward or classic

examples whose value is being able to transparently show the power

of the algorithm. Now we have finally gotten to the difficult part of the

topic, which is learning to push the needle on various solutions. For those

who are working directly in research or industry, this process should be

familiar. If it is not, I highly suggest that you begin implementing this. With

that being said, we will move on to the final chapter where we will repeat

this process, but on a brand new environment, and we will walk the reader

through how to create their own OpenAI gym environment from scratch so

they can begin to do their own research on their own!

Chapter 4 Market Making via Reinforcement Learning

95© Taweh Beysolow II 2019
T. Beysolow II, Applied Reinforcement Learning with Python,
https://doi.org/10.1007/978-1-4842-5127-0_5

CHAPTER 5

Custom OpenAI
Reinforcement
Learning
Environments
For our final chapter, we will be focusing on OpenAI’s gym package,

but more importantly trying to understand how we can create our own

custom environments so we can tackle more than the typical use cases.

Most of this chapter will focus around what I would suggest regarding

programming practices for OpenAI as well as recommendations on

how I would generally write most of this software. Finally, after we have

completed creating an environment, we will move on to focusing on

solving the problem. For this instance, we will focus on trying to create and

solve a new video game.

�Overview of Sonic the Hedgehog
For those who aren’t familiar, Sonic the Hedgehog (Figure 5-1) is another

classic game, often considered a rival to that of Super Mario Bros. The

concept of the game is that you are playing a hedgehog that races from

96

one side of the level to the other, with the objective of avoiding or killing

enemies and collecting rings. If the player gets attacked, they lose all of

their rings. If they get attacked with 0 rings, they lose a life. If they lose all of

their lives, the game ends. We will not be focusing on any levels with boss

battles for now and instead will focus on a simple introduction level (Level

1). As it relates to this task, our objective will to be to train the agent to

successfully navigate the level without dying.

Figure 5-1.  Sonic the Hedgehog Screenshot

�Downloading the Game
Foremost, users will need to start by creating a Steam account and then

downloading Steam to their local machine, if they have not done so

already. For those not familiar, Steam is a game streaming service that

Chapter 5 Custom OpenAI Reinforcement Learning Environments

97

allows players to buy and rent games without having to get a specific

console. In this context, we will be buying Sonic the Hedgehog ($4.99). After

the user has downloaded the game, they should see the following screen

once they have logged into the Steam desktop client (Figure 5-2).

After installing the game, readers should see the play button,

indicating that the preliminary setup is done. However, there is some

boiler plate which we need to do with the retro library that we will walk

the reader through now. Retro is a library that specifically works with older

video games and making them compatible with OpenAI. This will take

care of a lot of the heavy lifting that we would otherwise encounter and

make the process much more straightforward. Regardless, let us download

the files we need accordingly. First, users should download and clone the

repository at this URL: https://github.com/openai/retro.

After cloning this repository, we then need to create a virtual

environment. For those that are not familiar, virtual environments are a

way of created isolated instances of certain python installations and the

relative dependencies associated with it. The benefit to this is that for

Figure 5-2.  Steam Dashboard

Chapter 5 Custom OpenAI Reinforcement Learning Environments

https://github.com/openai/retro

98

isolated tasks, or projects, we can create python installations that have

only the dependencies that they use. Once virtualenv is installed, we can

instantiate it by entering the following commands into the bash terminal:

"sudo mkdir virtual_environments && cd virtual_environments"

"virtualenv [environment name]/python3 –m venv [environment name]"

These commands respectively create the virtual environment

directory, cd into them, and then create the virtual environment. After this

is completed, users should then cd into the directory where the locally

cloned retro library sits. After that, they should type in the following

command:

"python –m retro.import.sega_classics"

This command writes the respective ROMs for the games that fall

underneath the sega_classics.py files to our local environment. ROM refers

to read-only memory and usually in this context refers to the memory

that stores video games that often was distributed via cartridges, the norm

before the advent of discs and DVDs. Now that we have downloaded the

game and its respective ROMs, let’s move forward to how to work with

retro and python to create a custom environment.

�Writing the Code for the Environment
When looking back to the Super Mario Bros. and Doom examples, readers

can reference the fact that we used a custom library that utilized some of

the same techniques. Foremost let us analyze the functions in chapter5/

create_environment.py and describe what each of these will be doing in

detail. To begin, let us look at the body function as shown as follows:

def create_new_environment(environment_index, n_frames=4):

 (code redacted, please see github!)

 print(dictionary[environment_index]['game'])

Chapter 5 Custom OpenAI Reinforcement Learning Environments

99

 print(dictionary[environment_index]['state'])

 environment = make(game=dictionary[environment_index]['game'],

 state=dictionary[environment_index]['state'],

 bk2dir="./records")

 environment = ActionsDiscretizer(environment)

 environment = RewardScaler(environment)

 environment = PreprocessFrame(environment)

 environment = FrameStack(environment, n_frames)

 environment = AllowBacktracking(environment)

 return environment

The process of making an environment is fairly straightforward,

in that we pass through parameters to the make() function from the

“retro_contest” module. This creates an environment which we then add

structure to from a variety of functions, until we eventually return back our

customized and formatted environment. To begin, however, let us first talk

about one of the most important aspects of our environment, which will be

creating and defining the actions we can perform within them.

class PreprocessFrame(gym.ObservationWrapper):

def __init__(self, environment, width, height):

 gym.ObservationWrapper.__init__(self, environment)

 self.width = width

 self.height = height

 �self.observation_space = gym.spaces.Box(low=0,

high=255,

shape=(self.height, self.width, 1),

dtype=np.uint8)

 def observation(self, image):

 image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)

Chapter 5 Custom OpenAI Reinforcement Learning Environments

100

 �image = cv2.resize(image, (self.width, self.height),

interpolation=cv2.INTER_AREA)

 image = image[:, :, None]

 return image

Like most of the problems we have been dealing with when working

with 2D or 3D video games, we are essentially dealing with a permutation

of a computer vision problem. As such, we need to start by preprocessing

the image such that we reduce the input size or the neural network (or

other method) we will utilize, and then return a single one-dimensional

matrix of the grayscaled image. Most of this should be familiar to readers

from the prior chapters, but for posterity, we start by instantiating the

PreprocessFrame() class, which first accepts as its only argument the

ObservationWrapper. Readers have worked with this in every example

earlier, as evidenced from OpenAI Gym source code as follows:

class ObservationWrapper(Wrapper):

 def reset(self, **kwargs):

 observation = self.env.reset(**kwargs)

 return self.observation(observation)

 def step(self, action):

 observation, reward, done, info = self.env.step(action)

 return self.observation(observation), reward, done, info

 def observation(self, observation):

 raise NotImplementedError

This is the core of the library where we step, reset, and yield the current

state of the environment. Moving back to the PreprocessFrame() class,

we start by defining the environment, the width and the height of the

image we want to output. From these three arguments, we also define

observation space that we will have the ability to manipulate our agent

within. For this, we utilize the Box() class from gym. This is simply defined

Chapter 5 Custom OpenAI Reinforcement Learning Environments

101

as an element of Euclidean space in Rn. In this instance, we would define

the bounds of this box as 0 and 255, representing the degree of whiteness

of a given pixel, where 0 is complete absence of whiteness (black) and

255 is the complete absence of darkness (white). The observation()

function performs the actual grayscaling of an individual frame and

outputting it so that we can analyze it. Moving forward, let us get into the

meat and potatoes of creating an environment with the next class, the

ActionsDiscretizer().

class ActionsDiscretizer(gym.ActionWrapper):

def __init__(self, env):

 super(ActionsDiscretizer, self).__init__(env)

 �buttons = ["B", "A", "MODE", "START", "UP", "DOWN",

"LEFT", "RIGHT", "C", "Y", "X", "Z"]

 �actions = [['LEFT'], ['RIGHT'], ['LEFT', 'DOWN'],

['RIGHT', 'DOWN'], ['DOWN'],

 ['DOWN', 'B'], ['B']]

 self._actions = []

Starting with the instantiation of the class, readers should direct

themselves to the buttons and actions array. Depending on whether

you are designing an environment for a keyboard or for a specific game

console, the buttons will differ. These buttons correspond to all of the

possible buttons on a Sega Genesis controller.

With that being said, not every possible action will map to every

button, particularly in the case of this version of Sonic the Hedgehog.

Although certain advanced capabilities were added with newer iterations

of the game, the original game is pretty standard in that Sonic can walk/run

left or right and can jump using the “B” button. Moving forward, let us look

at how we create a specific action space.

Chapter 5 Custom OpenAI Reinforcement Learning Environments

102

 for action in actions:

 _actions = np.array([False] * len(buttons))

 for button in action:

 _actions[buttons.index(button)] = True

 self._actions.append(_actions)

 self.action_space = gym.spaces.Discrete(len(self._actions))

For the array of actions, we then iterate through each of the

actions in the “actions” array and then create a new array entitled

“_actions.” This should be an array with dimensions 1 x N where N is the

number of buttons on the controller and every index is false. Now,

for each of the buttons in the actions, we want to map that to an array

where some entries will be False and others True. Finally, this is assigned

to “action_space” as an attribute of the “self” variable. We have already

discussed scaling rewards other times, so there is no need to review that

function. However, we should discuss an important function, particularly

in games/environments similar to this one.

class AllowBacktracking(gym.Wrapper):

def __init__(self, environment):

 super(AllowBacktracking, self).__init__(environment)

 self.curent_reward = 0

 self.max_reward = 0

 def reset(self, **kwargs):

 self.current_reward = 0

 self.max_reward = 0

 return self.env.reset(**kwargs)

The AllowBacktracting() class is fairly simple in that for 2D

environments, we must reach the end of the level by going backward

eventually. With that being stated, however, sometimes, it is possible

that there is a better path to be taken if we occasionally (however minor)

Chapter 5 Custom OpenAI Reinforcement Learning Environments

103

backtrack our steps and then chose and alternative set of actions. We don’t

want to encourage the reward structure to do this too much, however, so

we assign the following step function to the environment:

 def step(self, action):

 �observation, reward, done, info = self.environment.

step(action)

 self.current_reward += reward

 reward = max(0, self.current_reward - self.max_reward)

 �self.max_reward = max(self.max_reward, self.current_

reward)

 return observation, reward, done, info

The important part for the reader to take away from this function is the

fact that we are assigning the reward value to be 0 or above 0. In that case,

we are not going to go backward if it results in a poor reward. With all of the

boilerplate done, let us move onward to discussing what model we will be

using specifically and why.

�A3C Actor-Critic
Readers will recall that we utilized this model when trying to train

our agent to play Super Mario Bros.; we utilized the Advantage

Actor-Critic model which was abbreviated as A2C. In Figure 5-3, we can

see a visualization of an A3C Network.

Chapter 5 Custom OpenAI Reinforcement Learning Environments

104

As stated earlier, Actor-Critic networks are effective in the sense that

we are able to use the value function to update the policy function. Rather

than waiting for an episode to finish and taking all of the actions, regardless

of which individual ones were good vs. bad, we can incrementally evaluate

each action and then change our policy accordingly to receive a much

more optimized result and quicker than using vanilla policy gradients.

With respect to A3C vs. A2C, A3C tends to be less optimal because we are

training multiple agents parallel to one another all based off of some set

of initial global parameters. Each agent, as it explores the environment,

will update the parameters accordingly, from which other agents will

update. However, not all agents will update at the same time, hence the

“asynchronous” nature of this problem. Moving forward, however, let us

discuss our implementation as it is contained in the A3CModel() class.

Figure 5-3.  A3C Diagram

Chapter 5 Custom OpenAI Reinforcement Learning Environments

105

class A3CNetwork():

 def __init__(self, s_size, a_size, scope, trainer):

 (code redacted)

layer3 = tf.layers.flatten(inputs=layer3)

 output_layer = fully_connected_layer(inputs=layer3,

 units=512,

activation='softmax')

 outputs, cell_state, hidden_state = lstm_

layer(input=hidden,

size=s_size,

actions=a_size,

apply_softmax=False)

Similar to the A2C solution we deployed earlier, we start by passing

through a preprocessed image through convolutional layers. This helps us

to reduce dimensionality and also remove noise from the data as stated

earlier. However a new step we will feature here that wasn’t in the prior

example will be to pass the data through an LSTM layer. LSTMs were

models devised in the 1990s by Sepp Hochreiter and Jürgen Schmidhuber,

the long short-term memory unit, or LSTM. Let us start by visualizing what

this model looks like as it is detailed in the image shown in Figure 5-4.

Chapter 5 Custom OpenAI Reinforcement Learning Environments

106

LSTMs are distinguished structurally by the fact that we observe them

as blocks, or units, rather than the traditional structure we often see a

neural network appearing as. With that being said, the same principles are

generally applied here. However, we have an improvement over the hidden

state from the vanilla RNN that we discussed earlier that we will begin

walking through the formulae associated with the LSTM:

i W x W h W c bt xi t hi t hc t i= + + +()- -s 1 1 (2.12)

f W x W h W c bt xf t hf t hf t f= + + +()- -s 1 1 (2.13)

c f c i W x W h bt t t t xc t hc t c= + + +()- - 1 1tanh (2.14)

 o W x W h W c bt xo t ho t co t o= + + +()-s 1 (2.15)

 h o ct t t= () tanh (2.16)

where it is the input gate, ft is the forget gate, ct is the cell state, ot is the

output gate, ht is the output vector, σ is the sigmoid activation function, and

tanh is the tanh activation function.

Initially, let us draw our attention to the diagram of the model,

specifically the LSTM unit in the center, and understand the directional

flow as they relate to the formulae. Preliminarily, let us discuss the

Figure 5-4.  LSTM Model

Chapter 5 Custom OpenAI Reinforcement Learning Environments

107

notation. Each block, denoted by rectangles , represents a neural

network layer, through which we pass through values. The horizontal lines

with arrows represent the vectors and direction in which the data moves.

The data, after it moves through a neural network layer, often is passed to a

pointwise operation object, represented by circles . Both the hidden

and cell states are initialized at 0 upon initialization of the algorithm.

Programmatically, most of the computation associated with the LSTM

layer happens underneath the hood of the “dynamic_rnn()” function that

is supplied by Tensorflow; however, we create a body function around this

function where the preceding cells, states, and associated variables are

defined as follows:

def lstm_layer(input, size, actions, apply_softmax=False):

 input = tf.expand_dims(input, [0])

 �lstm = tf.contrib.rnn.BasicLSTMCell(size, state_is_

tuple=True)

 state_size = lstm.state_size

 step_size = tf.shape(input)[:1]

 cell_init = np.zeros((1, state_size.c), np.float32)

 hidden_init = np.zeros((1, state_size.h), np.float32)

 initial_state = [cell_init, hidden_init]

 cell_state = tf.placeholder(tf.float32, [1, state_size.c])

 hidden_state = tf.placeholder(tf.float32, [1, state_size.h])

 �input_state = tf.contrib.rnn.LSTMStateTuple(cell_state,

hidden_state)

 (code redacted, please see github!)

Specifically as to where and when an LSTM model is utilized, it is most

common for them to be applied to sequence-based tasks where a given

output depends on more than one input. Examples of this might be tasks

such as spell check, translating languages, and predicting time series.

As it relates to this specific task, we are preprocessing the data such that

Chapter 5 Custom OpenAI Reinforcement Learning Environments

108

we stack frames four at a time. This is typically done to try and simulate

some form of motion where we determine the best possible action to take

based on several prior observations. In this instance, the reasoning behind

why an RNN would be applied is straightforward. While an LSTM is not

necessary, we thought it useful to show the reader how we can combine

additional and differing types of machine learning models to this problem.

Moving forward, let us direct our attention back to the A3C network itself

and move toward the latter part of the function.

 �self.policy = slim.fully_connected(output_layer,

a_size,

 activation_fn=tf.nn.softmax,

 �weights_initializer=normalized_columns_

initializer(0.01),

 biases_initializer=None)

 self.value = slim.fully_connected(rnn_out, 1,

 activation_fn=None,

 �weights_initializer=normalized_columns_

initializer(1.0),

 biases_initializer=None)

With the output from the LSTM yielded, we pass this through a fully

connected layer such that we now have defined our policy and value

functions, which we will utilize moving forward to produce an output

matrix. Separately, readers should observe the calculation of the gradient

and update to the parameters to individually be similar. However, what

precisely makes this model different is the asynchronous nature of the

works. Now, we will walk through the final portion of code, which will be

what we can refer to as the main/master function.

 def play_sonic()

(code redacted, please see github!)

wiith tf.device("/cpu:0"):

Chapter 5 Custom OpenAI Reinforcement Learning Environments

109

 master_network = AC_Network(s_size,a_size,'global',None)

 num_workers = multiprocessing.cpu_count()

 workers = []

for i in range(num_workers):

 workers.append(Worker(environment=environment,

 name=i,

 s_size=s_size,

 a_sizse=a_size,

 trainer=trainer,

 saver=saver,

 model_path=model_path))

In the following code, we start by creating the master network, which

contains the global parameters and creating a number of workers based on

the available CPUs. The previously shown method will ensure that we do

not utilize more memory than we should and crash the program. Then for

each of the workers we intend to create, we append them to an array after

we instantiate them. Moving forward, however, is where the important part

of the computation happens.

 coord = tf.train.Coordinator()

sess.run(tf.global_variables_initializer())

worker_threads = []

 for worker in workers:

 �worker_work = lambda: worker.work(max_episode_

length=max_episode_length,

 gamma=gamma,

 master_network=master_network,

 sess=sess,

 coord=coord)

Chapter 5 Custom OpenAI Reinforcement Learning Environments

110

 _thread = threading.Thread(target=(worker_work))

 _thread.start()

 worker_threads.append(_thread)

 coord.join(worker_threads)

Readers should first take note of the tf.train.Coordinator() function that

we will be using as well as the threading library. For the implementation

of A3C, it is important to understand what we are doing on the backend

to clear any potential confusion up. For those that are unaware, a thread

is an individual flow of execution such that multithreading would allow

you to run processes on different processors. We create a thread with the

“_thread” variable by passing it a function, in this case, the “worker_work”

variable. This is created by the worker.work() function, which we define as

the following body of code:

 def work(self,max_episode_length,gamma,sess,coord,saver):

 (code redacted, please see github!)

while self.env.is_episode_finished() == False:

action_dist, value_function ,rnn_state = sess.run([self.local_

AC.policy,

 self.local_AC.value,

self.local_AC.state_out]...)}

 �action = np.random.choice(action_dist[0],

p=action_dist[0])

 action = np.argmax(action_dist == action)

 �reward = self.env.make_action(self.

actions[action]) / 100.0

 done = self.env.is_episode_finished()

episode_buffer.append([prior_state, action, reward, current_

state, done, value[0,0]])

 episode_values.append(value[0,0])

Chapter 5 Custom OpenAI Reinforcement Learning Environments

111

We start by first instantiating a couple of variables by executing the

computational graph/A3C model. Specifically, in the preceding section

of code we want to randomly choose actions from the distribution that is

yielded. From this point, everything else should seem relatively familiar

from prior examples. We perform an action in the environment, which

should yield some reward and also a value function. What is new to the

reader, however, is how we would update the master parameters for the

workers. This itself ties back into the multithreading example, specifically

with the coord.join() function. With an understanding of threading and

where this ties into the implementation of A3C as we have written it, we

can finally discuss the tf.train.Coodinator() function we briefly brought up

earlier. This function is utilized to coordinate the termination of multiple

threads once they have all terminated. This is specifically done with the

join() function, which we use when we want one thread to wait for another

to finish. This will cause the main thread to pause and wait for another

thread to complete. This is precisely where the asynchronous nature of

A3C comes to life in this problem!

�Conclusion
When training the model for 10 hours, we observed reasonable

performance; however, something that tends to continuously be a problem

is the parts of the level where Sonic needs to oftentimes run around the

circular paths. Because of this, more training is likely recommended. With

that being said, initially we have noticed the ability of the agent to defeat

or avoid enemies as well as the ability to move through the level while

collecting some coins. With this being stated though, this sheds light on

the difficulty of this problem.

Readers must be aware of the difficulty of reinforcement learning.

While RL is still a heavily researched field, for those that want to deploy

these for solutions should be aware that Actor-Critic models in particular

Chapter 5 Custom OpenAI Reinforcement Learning Environments

112

can be very difficult to write from scratch. Not even addressing the models

themselves, we spent a significant bit of time building the boilerplate to

even handle the environment. While this was a simple 2D game, there

are fairly complex environments that would merit working alongside and

engineer who focused entirely on building the tools to render and wrap the

environment.

With respect to solving the problem itself, the amount of time taken

to train without an indication of precisely how the problem should be

tackled can result in a large amount of wasted time. Frame your problems

appropriately and be prepared to try many different methods, but

spend far more time in the instance of reinforcement learning framing

the problem than you would try different approaches. Moreover, when

you’re designing your environments, consider what the different reward

structures you could utilize. For example, in the instance of Sonic, do

you want to preference picking up more rings than less, or is it better to

preference gaining points from destroying enemies? Obviously, in the

instance of dying, that should be what yields the largest negative reward,

but is it worst to die in your eyes from Sonic falling off the map or worse to

die from getting killed by a random enemy? All of these considerations will

affect training but should be high-level concerns that should be addressed

at the beginning of the problem.

Readers are encouraged to utilize the code provided in these examples

and improve on them where they see fit, perhaps by making certain

implementations more computationally efficient and also where it is

appropriate to improve upon the solutions as they were presented. With

collaboration, we can solve problems of incredible difficulty and drive this

field forward together.

Chapter 5 Custom OpenAI Reinforcement Learning Environments

113© Taweh Beysolow II 2019
T. Beysolow II, Applied Reinforcement Learning with Python,
https://doi.org/10.1007/978-1-4842-5127-0

APPENDIX A

�Source Code
This appendix references the initial release source code for this book.
For updates that will happen occasionally to the code base as necessary,
please check the Github by going to www.apress.com/9781484251263.

�Market Making Model Utilities
from collections import deque

class Memory():

 def __init__(self, max_size):

 self.buffer = deque(maxlen = max_size)

 def add(self, experience):

 self.buffer.append(experience)

 def sample(self, batch_size):

 buffer_size = len(self.buffer)

 index = np.random.choice(np.arange(buffer_size),

 size=batch_size,

 replace=True)

 return [self.buffer[i] for i in index]

class DeepQNetworkMM():

https://doi.org/10.1007/978-1-4842-5127-0
http://www.apress.com/9781484251263

114

 �def __init__(self, n_units, n_classes, state_size, action_

size, learning_rate):

 self.state_size = state_size

 self.action_size = action_size

 self.learning_rate = learning_rate

 self.n_units = n_units

 self.n_classes = n_classes

 �self.input_matrix = tf.placeholder(tf.float32,

[None, state_size])

 �self.actions = tf.placeholder(tf.float32,

[None, n_classes])

 self.target_Q = tf.placeholder(tf.float32, [None])

 �self.layer1 = fully_connected_layer(inputs=self.input_

matrix, units=self.n_units, activation=’selu’)

 �self.hidden_layer = fully_connected_layer(inputs=self.

layer1, units=self.n_units, activation=’selu’)

 �self.output_layer = fully_connected_layer(inputs=self.

hidden_layer, units=n_classes, activation=None)

 �self.predicted_Q = tf.reduce_sum(tf.multiply(self.

output_layer, self.actions), axis=1)

 �self.error_rate = tf.reduce_mean(tf.square(self.

target_Q - self.predicted_Q))

 �self.optimizer = tf.train.RMSPropOptimizer(self.

learning_rate).minimize(self.error_rate)

Appendix A Source Code

115

�Policy Gradient Utilities
import keras.layers as layers

from keras import backend

from keras.models import Model

from keras.optimizers import Adam

from keras.initializers import glorot_uniform

class PolicyGradient():

 �def __init__(self, n_units, n_layers, n_columns, n_outputs,

learning_rate, hidden_activation, output_activation, loss_

function):

 self.n_units = n_units

 self.n_layers = n_layers

 self.n_columns = n_columns

 self.n_outputs = n_outputs

 self.hidden_activation = hidden_activation

 self.output_activation = output_activation

 self.learning_rate = learning_rate

 self.loss_function = loss_function

 def create_policy_model(self, input_shape):

 input_layer = layers.Input(shape=input_shape)

 advantages = layers.Input(shape=[1])

 hidden_layer = layers.Dense(units=self.n_units,

 �activation=self.hidden_activation, use_bias=False,

kernel_initializer=glorot_uniform(seed=42))(input_

layer)

 �output_layer = layers.Dense(units=self.n_outputs,

activation=self.output_activation, use_bias=False,

kernel_initializer=glorot_uniform(seed=42))(hidden_

layer)

Appendix A Source Code

116

 def log_likelihood_loss(actual_labels, predicted_labels):

 �log_likelihood = backend.log(actual_labels *

(actual_labels - predicted_labels) + (1 - actual_

labels) * (actual_labels + predicted_labels))

 �return backend.mean(log_likelihood * advantages,

keepdims=True)

 if self.loss_function == 'log_likelihood':

 self.loss_function = log_likelihood_loss

 else:

 self.loss_function = 'categorical_crossentropy'

 �policy_model = Model(inputs=[input_layer, advantages],

outputs=output_layer)

 �policy_model.compile(loss=self.loss_function,

optimizer=Adam(self.learning_rate))

 �model_prediction = Model(input=[input_layer],

outputs=output_layer)

 return policy_model, model_prediction

�Models
import tensorflow as tf, numpy as np

from baselines.common.distributions import make_pdtype

activation_dictionary = {'elu': tf.nn.elu,

 'relu': tf.nn.relu,

 'selu': tf.nn.selu,

 'sigmoid': tf.nn.sigmoid,

 'softmax': tf.nn.softmax,

 None: None}

Appendix A Source Code

117

def normalized_columns_initializer(standard_deviation=1.0):

 def initializer(shape, dtype=None, partition_info=None):

 output = np.random.randn(*shape).astype(np.float32)

 �output *= standard_deviation/float(np.sqrt(np.

square(output).sum(axis=0, keepdims=True)))

 return tf.constant(output)

 return initializer

def linear_operation(x, size, name, initializer=None, bias_

init=0):

 with tf.variable_scope(name):

 �weights = tf.get_variable("w", [x.get_shape()[1], size],

initializer=initializer)

 �biases = tf.get_variable("b", [size], initializer=tf.

constant_initializer(bias_init))

 return tf.matmul(x, weights) + biases

def convolution_layer(inputs, dimensions, filters, kernel_size,

strides, gain=np.sqrt(2), activation='relu'):

 if dimensions == 3:

 return tf.layers.conv1d(inputs=inputs,

 filters=filters,

 kernel_size=kernel_size,

 �kernel_initializer=tf.

orthogonal_initializer(gain),

 strides=(strides),

 �activation=activation_

dictionary[activation])

Appendix A Source Code

118

 elif dimensions == 4:

 return tf.layers.conv2d(inputs=inputs,

 filters=filters,

 kernel_size=kernel_size,

 �kernel_initializer=tf.

orthogonal_initializer(gain),

 strides=(strides),

 �activation=activation_

dictionary[activation])

def fully_connected_layer(inputs, units, activation, gain=np.

sqrt(2)):

 return tf.layers.dense(inputs=inputs,

 units=units,

 �activation=activation_

dictionary[activation],

 �kernel_initializer=tf.orthogonal_

initializer(gain))

def lstm_layer(input, size, actions, apply_softmax=False):

 input = tf.expand_dims(input, [0])

 �lstm = tf.contrib.rnn.BasicLSTMCell(size, state_is_

tuple=True)

 state_size = lstm.state_size

 step_size = tf.shape(input)[:1]

 cell_init = np.zeros((1, state_size.c), np.float32)

 hidden_init = np.zeros((1, state_size.h), np.float32)

 initial_state = [cell_init, hidden_init]

 cell_state = tf.placeholder(tf.float32, [1, state_size.c])

 hidden_state = tf.placeholder(tf.float32, [1, state_size.h])

 �input_state = tf.contrib.rnn.LSTMStateTuple(cell_state,

hidden_state)

Appendix A Source Code

119

 _outputs, states = tf.nn.dynamic_rnn(cell=lstm,

 inupts=input,

 �initial_state=input_

state,

 sequence_length=step_size,

 time_major=False)

 _cell_state, _hidden_state = states

 output = tf.reshape(_outputs, [-1, size])

 output_state = [_cell_state[:1, :], _hidden_state[:1, :]]

 �output = linear_operation(output, actions, "logits",

normalized_columns_initializer(0.01))

 output = tf.nn.softmax(output, dim=-1)

 return output, _cell_state, _hidden_state

def create_weights_biases(n_layers, n_units, n_columns, n_outputs):

 '''

 �Creates dictionaries of variable length for differing

neural network models

 Arguments

 n_layers - int - number of layers

 �n_units - int - number of neurons within each individual

layer

 n_columns - int - number of columns within dataset

 :return: dict (int), dict (int)

 '''

 weights, biases = {}, {}

 for i in range(n_layers):

 if i == 0:

 �weights['layer'+str(i)] = tf.Variable(tf.random_

normal([n_columns, n_units]))

Appendix A Source Code

120

 �biases['layer'+str(i)] = tf.Variable(tf.random_

normal([n_columns]))

 elif i != 0 and i != n_layers-1:

 �weights['layer'+str(i)] = tf.Variable(tf.random_

normal([n_units, n_units]))

 �biases['layer'+str(i)] = tf.Variable(tf.random_

normal([n_units]))

 elif i != 0 and i == n_layers-1:

 �weights['output_layer'] = tf.Variable(tf.random_

normal([n_units, n_outputs]))

 �biases['output_layer'] = tf.Variable(tf.random_

normal([n_outputs]))

 return weights, biases

def create_input_output(input_dtype, output_dtype, n_columns,

n_outputs):

 '''

 Create placeholder variables for tensorflow graph

 '''

 X = tf.placeholder(shape=(None, n_columns), dtype=input_dtype)

 Y = tf.placeholder(shape=(None, n_outputs), dtype=output_dtype)

 return X, Y

class DeepQNetwork():

 �def __init__(self, n_units, n_classes, n_filters, stride,

kernel, state_size, action_size, learning_rate):

 self.state_size = state_size

 self.action_size = action_size

 self.learning_rate = learning_rate

 self.n_units = n_units

Appendix A Source Code

121

 self.n_classes = n_classes

 self.n_filters = n_filters

 self.stride = stride

 self.kernel = kernel

 �self.input_matrix = tf.placeholder(tf.float32,

[None, state_size])

 �self.actions = tf.placeholder(tf.float32,

[None, n_classes])

 self.target_Q = tf.placeholder(tf.float32, [None])

 �self.network1 = convolution_layer(inputs=self.input_

matrix,

 filters=self.n_filters,

 kernel_size=self.kernel,

 strides=self.stride,

 dimensions=4,

 activation='elu')

 �self.network1 = tf.layers.batch_normalization(self.

network1, training=True, epsilon=1e-5)

 self.network2 = convolution_layer(inputs=self.network1,

 filters=self.n_filters*2,

 �kernel_size=int(self.

kernel/2),

 strides=int(self.stride/2),

 dimensions=4,

 activation='elu')

 �self.network2 = tf.layers.batch_

normalization(inputs=self.network2, training=True,

epsilon=1e-5)

Appendix A Source Code

122

 self.network3 = convolution_layer(inputs=self.network2,

 filters=self.n_filters*4,

 �kernel_size=int(self.

kernel/2),

strides=int(self.

stride/2), dimensions=4,

activation=’elu’)

 �self.network3 = tf.layers.batch_

normalization(inputs=self.network3, training=True,

epsilon=1e-5)

 self.network3 = tf.layers.flatten(inputs=self.network3)

 self.output = fully_connected_layer(inputs=self.network3,

 units=self.n_units,

 activation='elu')

 self.output = fully_connected_layer(inputs=self.output,

 �units=n_classes, activation=None)

 �self.predicted_Q = tf.reduce_sum(tf.multiply(self.

output, self.actions), axis=1)

 �self.error_rate = tf.reduce_mean(tf.square(self.

target_Q - self.predicted_Q))

 �self.optimizer = tf.train.RMSPropOptimizer(self.

learning_rate).minimize(self.error_rate)

class ActorCriticModel():

 �def __init__(self, session, environment, action_space,

n_batches, n_steps, reuse=False):

Appendix A Source Code

123

 session.run(tf.global_variables_initializer())

 self.distribution_type = make_pdtype(action_space)

 height, weight, channel = environment.shape

 �inputs_ = tf.placeholder(tf.float32, [height, weight,

channel], name='inputs')

 scaled_images = tf.cast(inputs_, tf.float32)/float(255)

 with tf.variable_scope('model', reuse=reuse):

 �layer1 = tf.layers.batch_normalization(convolution_

layer(inputs=scaled_images,

 filters=32,

 kernel_size=8,

 strides=4,

 dimensions=3))

 �layer2 = tf.layers.batch_normalization(convolution_

layer(inputs=tf.nn.relu(layer1),

 filters=64,

 kernel_size=4,

 strides=2,

 dimensions=3))

 �layer3 = tf.layers.batch_normalization(convolution_

layer(inputs=tf.nn.relu(layer2),

 filters=64,

 kernel_size=3,

 strides=1,

 dimensions=3))

 layer3 = tf.layers.flatten(inputs=layer3)

 �output_layer = fully_connected_layer(inputs=layer3,

units=512, activation='softmax')

Appendix A Source Code

124

 �self.distribution, self.logits = self.distribution_

type.pdfromlatent(output_layer, init_scale=0.01)

 �value_function = fully_connected_layer(output_

layer, units=1, activation=None)[:, 0]

 self.initial_state = None

 sampled_action = self.distribution.sample()

 def step(current_state, *_args, **_kwargs):

 �action, value = session.run([sampled_action, value_

function], {inputs_: current_state})

 return action, value

 def value(current_state, *_args, **_kwargs):

 �return session.run(value_function, {inputs_:

current_state})

 def select_action(current_state, *_args, **_kwargs):

 �return session.run(sampled_action, {inputs_:

current_state})

 self.inputs_ = inputs_

 self.value_function = value_function

 self.step = step

 self.value = value

 self.select_action = select_action

Appendix A Source Code

125

�Chapter 1
�OpenAI Example
import gym

def cartpole():

 environment = gym.make('CartPole-v1')

 environment.reset()

 for _ in range(1000):

 environment.render()

 action = environment.action_space.sample()

 �observation, reward, done, info = environment.

step(action)

 print("Step {}:".format(_))

 print("action: {}".format(action))

 print("observation: {}".format(observation))

 print("reward: {}".format(reward))

 print("done: {}".format(done))

 print("info: {}".format(info))

if __name__ == '__main__':

 cartpole()

�Chapter 2
�Cart Pole Example

import gym, numpy as np, matplotlib.pyplot as plt

from neural_networks.policy_gradient_utilities import

PolicyGradient

#Parameters

Appendix A Source Code

126

n_units = 5

gamma = .99

batch_size = 50

learning_rate = 1e-3

n_episodes = 10000

render = False

goal = 190

n_layers = 2

n_classes = 2

environment = gym.make('CartPole-v1')

environment_dimension = len(environment.reset())

def calculate_discounted_reward(reward, gamma=gamma):

 output = [reward[i] * gamma**i for i in range(0,

len(reward))]

 return output[::-1]

def score_model(model, n_tests, render=render):

 scores = []

 for _ in range(n_tests):

 environment.reset()

 observation = environment.reset()

 reward_sum = 0

 while True:

 if render:

 environment.render()

 �state = np.reshape(observation, [1, environment_

dimension])

 predict = model.predict([state])[0]

 action = np.argmax(predict)

 �observation, reward, done, _ = environment.

step(action)

Appendix A Source Code

127

 reward_sum += reward

 if done:

 break

 scores.append(reward_sum)

 environment.close()

 return np.mean(scores)

def cart_pole_game(environment, policy_model, model_

predictions):

 loss = []

 n_episode, reward_sum, score, episode_done = 0, 0, 0, False

 n_actions = environment.action_space.n

 observation = environment.reset()

 states = np.empty(0).reshape(0, environment_dimension)

 actions = np.empty(0).reshape(0, 1)

 rewards = np.empty(0).reshape(0, 1)

 discounted_rewards = np.empty(0).reshape(0, 1)

 while n_episode < n_episodes:

 �state = np.reshape(observation, [1, environment_

dimension])

 prediction = model_predictions.predict([state])[0]

 �action = np.random.choice(range(environment.action_

space.n), p=prediction)

 states = np.vstack([states, state])

 actions = np.vstack([actions, action])

 �observation, reward, episode_done, info = environment.

step(action)

 reward_sum += reward

 rewards = np.vstack([rewards, reward])

Appendix A Source Code

128

 if episode_done == True:

 �discounted_reward = calculate_discounted_

reward(rewards)

 �discounted_rewards = np.vstack([discounted_rewards,

discounted_reward])

 rewards = np.empty(0).reshape(0, 1)

 if (n_episode + 1) % batch_size == 0:

 discounted_rewards -= discounted_rewards.mean()

 discounted_rewards /= discounted_rewards.std()

 discounted_rewards = discounted_rewards.squeeze()

 actions = actions.squeeze().astype(int)

 train_actions = np.zeros([len(actions), n_actions])

 train_actions[np.arange(len(actions)), actions] = 1

 �error = policy_model.train_on_batch([states,

discounted_rewards], train_actions)

 loss.append(error)

 �states = np.empty(0).reshape(0, environment_

dimension)

 actions = np.empty(0).reshape(0, 1)

 discounted_rewards = np.empty(0).reshape(0, 1)

 �score = score_model(model=model_predictions,

n_tests=10)

 �print('''\nEpisode: %s \nAverage Reward: %s \

nScore: %s \nError: %s'''

 �)%(n_episode+1, reward_sum/float(batch_

size), score, np.mean(loss[-batch_

size:]))

Appendix A Source Code

129

 if score >= goal:

 break

 reward_sum = 0

 n_episode += 1

 observation = environment.reset()

 �plt.title('Policy Gradient Error plot over %s Episodes'%(n_

episode+1))

 plt.xlabel('N batches')

 plt.ylabel('Error Rate')

 plt.plot(loss)

 plt.show()

if __name__ == '__main__':

 mlp_model = PolicyGradient(n_units=n_units,

 n_layers=n_layers,

 n_columns=environment_dimension,

 n_outputs=n_classes,

 learning_rate=learning_rate,

 hidden_activation='selu',

 output_activation='softmax',

 loss_function='log_likelihood')

 �policy_model, model_predictions = mlp_model.create_policy_

model(input_shape=(environment_dimension,))

 policy_model.summary()

 cart_pole_game(environment=environment,

 policy_model=policy_model,

 model_predictions=model_predictions)

Appendix A Source Code

130

�Super Mario Example
import gym, numpy as np, matplotlib.pyplot as plt

from neural_networks.policy_gradient_utilities import

PolicyGradient

#Parameters

n_units = 5

gamma = .99

batch_size = 50

learning_rate = 1e-3

n_episodes = 10000

render = False

goal = 190

n_layers = 2

n_classes = 2

environment = gym.make('CartPole-v1')

environment_dimension = len(environment.reset())

def calculate_discounted_reward(reward, gamma=gamma):

 �output = [reward[i] * gamma**i for i in range(0,

len(reward))]

 return output[::-1]

def score_model(model, n_tests, render=render):

 scores = []

 for _ in range(n_tests):

 environment.reset()

 observation = environment.reset()

 reward_sum = 0

 while True:

 if render:

 environment.render()

Appendix A Source Code

131

 �state = np.reshape(observation, [1, environment_

dimension])

 predict = model.predict([state])[0]

 action = np.argmax(predict)

 observation, reward, done, _ = environment.step(action)

 reward_sum += reward

 if done:

 break

 scores.append(reward_sum)

 environment.close()

 return np.mean(scores)

def cart_pole_game(environment, policy_model, model_

predictions):

 loss = []

 n_episode, reward_sum, score, episode_done = 0, 0, 0, False

 n_actions = environment.action_space.n

 observation = environment.reset()

 states = np.empty(0).reshape(0, environment_dimension)

 actions = np.empty(0).reshape(0, 1)

 rewards = np.empty(0).reshape(0, 1)

 discounted_rewards = np.empty(0).reshape(0, 1)

 while n_episode < n_episodes:

 �state = np.reshape(observation, [1, environment_

dimension])

 prediction = model_predictions.predict([state])[0]

 �action = np.random.choice(range(environment.action_

space.n), p=prediction)

 states = np.vstack([states, state])

 actions = np.vstack([actions, action])

Appendix A Source Code

132

 �observation, reward, episode_done, info = environment.

step(action)

 reward_sum += reward

 rewards = np.vstack([rewards, reward])

 if episode_done == True:

 �discounted_reward = calculate_discounted_

reward(rewards)

 �discounted_rewards = np.vstack([discounted_rewards,

discounted_reward])

 rewards = np.empty(0).reshape(0, 1)

 if (n_episode + 1) % batch_size == 0:

 discounted_rewards -= discounted_rewards.mean()

 discounted_rewards /= discounted_rewards.std()

 discounted_rewards = discounted_rewards.squeeze()

 actions = actions.squeeze().astype(int)

 train_actions = np.zeros([len(actions), n_actions])

 train_actions[np.arange(len(actions)), actions] = 1

 �error = policy_model.train_on_batch([states,

discounted_rewards], train_actions)

 loss.append(error)

 �states = np.empty(0).reshape(0, environment_

dimension)

 actions = np.empty(0).reshape(0, 1)

 discounted_rewards = np.empty(0).reshape(0, 1)

 �score = score_model(model=model_predictions,

n_tests=10)

Appendix A Source Code

133

 �print('''\nEpisode: %s \nAverage Reward: %s \

nScore: %s \nError: %s'''

 �)%(n_episode+1, reward_sum/float(batch_

size), score, np.mean(loss[-batch_size:]))

 if score >= goal:

 break

 reward_sum = 0

 n_episode += 1

 observation = environment.reset()

 �plt.title('Policy Gradient Error plot over %s Episodes'%(n_

episode+1))

 plt.xlabel('N batches')

 plt.ylabel('Error Rate')

 plt.plot(loss)

 plt.show()

if __name__ == '__main__':

 mlp_model = PolicyGradient(n_units=n_units,

 n_layers=n_layers,

 n_columns=environment_dimension,

 n_outputs=n_classes,

 learning_rate=learning_rate,

 hidden_activation='selu',

 output_activation='softmax',

 loss_function='log_likelihood')

 �policy_model, model_predictions = mlp_model.create_policy_

model(input_shape=(environment_dimension,))

 policy_model.summary()

Appendix A Source Code

134

 cart_pole_game(environment=environment,

 policy_model=policy_model,

 model_predictions=model_predictions)

�Chapter 3
�Frozen Lake Example
import os, time, gym, numpy as np

#Parameters

learning_rate = 1e-2

gamma = 0.96

epsilon = 0.9

n_episodes = 10000

max_steps = 100

environment = gym.make('FrozenLake-v0')

Q_matrix = np.zeros((environment.observation_space.n,

environment.action_space.n))

def choose_action(state):

 '''

 To be used after Q table has been updated, returns an action

 Parameters:

 state - int - the current state of the agent

 :return: int

 '''

 return np.argmax(Q_matrix[state, :])

def exploit_explore(prior_state, epsilon=epsilon, Q_matrix=Q_

matrix):

 '''

Appendix A Source Code

135

 �One half of the exploit-explore paradigm that we will

utilize

 Parameters

 �prior_state - int - the prior state of the environment

at a given iteration

 �epsilon - float - parameter that we use to determine

whether we will try a new or current best action

 :return: int

 '''

 if np.random.uniform(0, 1) < epsilon:

 return environment.action_space.sample()

 else:

 return np.argmax(Q_matrix[prior_state, :])

def update_q_matrix(prior_state, observation , reward, action):

 '''

 �Algorithm that updates the values in the Q table to reflect

knowledge acquired by the agent

 Parameters

 �prior_state - int - the prior state of the environment

before the current timestemp

 �observation - int - the current state of the

environment

 �reward - int - the reward yielded from the environment

after an action

 �action - int - the action suggested by the epsilon

greedy algorithm

 :return: None

 '''

Appendix A Source Code

136

 prediction = Q_matrix[prior_state, action]

 �actual_label = reward + gamma * np.max(Q_

matrix[observation, :])

 �Q_matrix[prior_state, action] = Q_matrix[prior_state,

action] + learning_rate*(actual_label - prediction)

def populate_q_matrix(render=False, n_episodes=n_episodes):

 '''

 �Directly implementing Q Learning (Greedy Epsilon) on the

Frozen Lake Game

 This function populations the empty Q matrix

 Parameters

 �prior_state - int - the prior state of the environment

before the current timestemp

 observation - int - the current state of the environment

 �reward - int - the reward yielded from the environment

after an action

 �action - int - the action suggested by the epsilon

greedy algorithm

 :return: None

 '''

 for episode in range(n_episodes):

 prior_state = environment.reset()

 _ = 0

 while _ < max_steps:

 if render == True: environment.render()

 action = exploit_explore(prior_state)

Appendix A Source Code

137

 �observation, reward, done, info = environment.

step(action)

 update_q_matrix(prior_state=prior_state,

 observation=observation,

 reward=reward,

 action=action)

 prior_state = observation

 _ += 1

 if done:

 break

def play_frozen_lake(n_episodes):

 '''

 �Directly implementing Q Learning (Greedy Epsilon) on the

Frozen Lake Game

 �This function uses the already populated Q Matrix and

displays the game being used

 Parameters

 �prior_state - int - the prior state of the environment

before the current timestemp

 observation - int - the current state of the environment

 �reward - int - the reward yielded from the environment

after an action

 �action - int - the action suggested by the epsilon

greedy algorithm

 :return: None

 '''

Appendix A Source Code

138

 for episode in range(n_episodes):

 print('Episode: %s'%episode+1)

 prior_state = environment.reset()

 done = False

 while not done:

 environment.render()

 action = choose_action(prior_state)

 �observation, reward, done, info = environment.

step(action)

 prior_state = observation

 if reward == 0:

 time.sleep(0.5)

 else:

 print('You have won on episode %s!'%(episode+1))

 time.sleep(5)

 os.system('clear')

 if done and reward == -1:

 print('You have lost this episode... :-/')

 time.sleep(5)

 os.system('clear')

 break

if __name__ == '__main__':

 populate_q_matrix(render=False)

 play_frozen_lake(n_episodes=10)

Appendix A Source Code

139

�Doom Example
import warnings, random, time, tensorflow as tf, numpy as np,

matplotlib.pyplot as plt

from neural_networks.models import DeepQNetwork

from algorithms.dql_utilities import create_environment, stack_

frames, Memory

from chapter3.frozen_lake_example import exploit_explore

from collections import deque

#Parameters

stack_size = 4

gamma = 0.95

memory_size = int(1e7)

train = True

episode_render = False

n_units = 500

n_classes = 3

learning_rate = 2e-4

stride = 4

kernel = 8

n_filters = 3

n_episodes = 1

max_steps = 100

batch_size = 64

environment, possible_actions = create_environment()

state_size = [84, 84, 4]

action_size = 3 #environment.get_avaiable_buttons_size()

explore_start = 1.0

explore_stop = 0.01

decay_rate = 1e-4

pretrain_length = batch_size

Appendix A Source Code

140

warnings.filterwarnings('ignore')

#writer = tf.summary.FileWriter("/tensorboard/dqn/1")

write_op = tf.summary.merge_all()

def exploit_explore(session, model, explore_start, explore_

stop, decay_rate, decay_step, state, actions):

 exp_exp_tradeoff = np.random.rand()

 �explore_probability = explore_stop + (explore_start -

explore_stop) * np.exp(-decay_rate * decay_step)

 if (explore_probability > exp_exp_tradeoff):

 action = random.choice(possible_actions)

 else:

 �Qs = session.run(model.output, feed_dict = {model.

input_matrix: state.reshape((1, *state.shape))})

 choice = np.argmax(Qs)

 action = possible_actions[int(choice)]

 return action, explore_probability

def train_model(model, environment):

 tf.summary.scalar('Loss', model.error_rate)

 saver = tf.train.Saver()

 �stacked_frames = deque([np.zeros((84,84), dtype=np.int) for

i in range(stack_size)], maxlen=4)

 memory = Memory(max_size=memory_size)

 scores = []

 with tf.Session() as sess:

 sess.run(tf.global_variables_initializer())

 decay_step = 0

 environment.init()

 for episode in range(n_episodes):

Appendix A Source Code

141

 step, reward_sum = 0, []

 environment.new_episode()

 state = environment.get_state().screen_buffer

 �state, stacked_frames = stack_frames(stacked_

frames, state, True)

 while step < max_steps:

 step += 1; decay_step += 1

 �action, explore_probability = exploit_

explore(session=sess,

 model=model,

 explore_start=explore_start,

 explore_stop=explore_stop,

 decay_rate=decay_rate,

 decay_step=decay_step,

 state=state,

 actions=possible_actions)

 reward = environment.make_action(action)

 done = environment.is_episode_finished()

 reward_sum.append(reward)

 if done:

 next_state = np.zeros((84,84), dtype=np.int)

 �next_state, stacked_frames = stack_

frames(stacked_frames=stacked_frames,

state=next_state, new_episode=False)

 step = max_steps

 total_reward = np.sum(reward_sum)

 scores.append(total_reward)

Appendix A Source Code

142

 print('Episode: {}'.format(episode),

 �'Total reward: {}'.format(total_

reward),

 �'Explore P: {:.4f}'.

format(explore_probability))

 �memory.add((state, action, reward, next_

state, done))

 else:

 �next_state = environment.get_state().

screen_buffer

 �next_state, stacked_frames = stack_

frames(stacked_frames, next_state, False)

 �memory.add((state, action, reward, next_

state, done))

 state = next_state

 batch = memory.sample(batch_size)

 �states = np.array([each[0] for each in batch],

ndmin=3)

 actions = np.array([each[1] for each in batch])

 rewards = np.array([each[2] for each in batch])

 �next_states = np.array([each[3] for each in

batch], ndmin=3)

 dones = np.array([each[4] for each in batch])

 target_Qs_batch = []

 �Qs_next_state = sess.run(model.predicted_Q,

feed_dict={model.input_matrix: next_states,

model.actions: actions})

 for i in range(0, len(batch)):

Appendix A Source Code

143

 terminal = dones[i]

 if terminal:

 target_Qs_batch.append(rewards[i])

 else:

 �target = rewards[i] + gamma *

np.max(Qs_next_state[i])

 target_Qs_batch.append(target)

 �targets = np.array([each for each in target_Qs_

batch])

 �error_rate, _ = sess.run([model.error_rate,

model.optimizer], feed_dict={model.input_

matrix: states, model.target_Q: targets, model.

actions: actions})

 '''

 # Write TF Summaries

 �summary = sess.run(write_op, feed_dict={model.

inputs_: states, model.target_Q: targets,

model.actions_: actions})

 writer.add_summary(summary, episode)

 writer.flush()

 if episode % 5 == 0:

 #saver.save(sess, filepath+'/models/model.ckpt')

 #print("Model Saved")

 '''

 plt.plot(scores)

 plt.title('DQN Performance During Training')

 plt.xlabel('N Episodes')

Appendix A Source Code

144

 plt.ylabel('Score Value')

 plt.show()

 plt.waitforbuttonpress()

 plt.close()

 return model

def play_doom(model, environment):

 �stacked_frames = deque([np.zeros((84,84), dtype=np.int) for

i in range(stack_size)], maxlen=4)

 scores = []

 with tf.Session() as sess:

 sess.run(tf.global_variables_initializer())

 totalScore = 0

 for _ in range(100):

 done = False

 environment.new_episode()

 state = environment.get_state().screen_buffer

 �state, stacked_frames = stack_frames(stacked_

frames, state, True)

 while not environment.is_episode_finished():

 �Q_matrix = sess.run(model.output, feed_dict =

{model.input_matrix: state.reshape((1, *state.

shape))})

 choice = np.argmax(Q_matrix)

 action = possible_actions[int(choice)]

 environment.make_action(action)

 done = environment.is_episode_finished()

 score = environment.get_total_reward()

Appendix A Source Code

145

 scores.append(score)

 time.sleep(0.01)

 if done:

 break

 score = environment.get_total_reward()

 print("Score: ", score)

 environment.close()

 plt.plot(scores)

 plt.title('DQN Performance After Training')

 plt.xlabel('N Episodes')

 plt.ylabel('Score Value')

 plt.show()

 plt.waitforbuttonpress()

 plt.close()

if __name__ == '__main__':

 model = DeepQNetwork(n_units=n_units,

 n_classes=n_classes,

 n_filters=n_filters,

 stride=stride,

 kernel=kernel,

 state_size=state_size,

 action_size=action_size,

 learning_rate=learning_rate)

 trained_model = train_model(model=model,

 environment=environment)

 play_doom(model=trained_model,

 environment=environment)

Appendix A Source Code

146

�Chapter 4
�Market Making Example
import random, tensorflow as tf, numpy as np, matplotlib.pyplot

as plt

from tgym.envs import SpreadTrading

from tgym.gens.deterministic import WavySignal

from neural_networks.market_making_models import

DeepQNetworkMM, Memory

from chapter2.cart_pole_example import calculate_discounted_

reward

from neural_networks.policy_gradient_utilities import

PolicyGradient

from tgym.gens.csvstream import CSVStreamer

#Parameters

np.random.seed(2018)

n_episodes = 1

trading_fee = .2

time_fee = 0

history_length = 2

memory_size = 2000

gamma = 0.96

epsilon_min = 0.01

batch_size = 64

action_size = len(SpreadTrading._actions)

learning_rate = 1e-2

n_layers = 4

n_units = 500

n_classes = 3

goal = 190

Appendix A Source Code

147

max_steps = 1000

explore_start = 1.0

explore_stop = 0.01

decay_rate = 1e-4

_lambda = 0.95

value_coefficient = 0.5

entropy_coefficient = 0.01

max_grad_norm = 0.5

log_interval = 10

hold = np.array([1, 0, 0])

buy = np.array([0, 1, 0])

sell = np.array([0, 0, 1])

possible_actions = [hold, buy, sell]

#Classes and variables

generator = CSVStreamer(filename='/Users/tawehbeysolow/

Downloads/amazon_order_book_data2.csv')

#generator = WavySignal(period_1=25, period_2=50, epsilon=-0.5)

memory = Memory(max_size=memory_size)

environment = SpreadTrading(spread_coefficients=[1],

 data_generator=generator,

 trading_fee=trading_fee,

 time_fee=time_fee,

 history_length=history_length)

state_size = len(environment.reset())

def baseline_model(n_actions, info, random=False):

 if random == True:

 action = �np.random.choice(range(n_actions), p=np.

repeat(1/float(n_actions), 3))

Appendix A Source Code

148

 action = possible_actions[action]

 else:

 if len(info) == 0:

 action = �np.random.choice(range(n_actions), p=np.

repeat(1/float(n_actions), 3))

 action = possible_actions[action]

 elif info['action'] == 'sell':

 action = buy

 else:

 action = sell

 return action

def score_model(model, n_tests):

 scores = []

 for _ in range(n_tests):

 environment.reset()

 observation = environment.reset()

 reward_sum = 0

 while True:

 "

 #environment.render()

 predict = model.predict([observation.reshape(1, 8)])[0]

 action = possible_actions[np.argmax(predict)]

 observation, reward, done, _ = environment.step(action)

 reward_sum += reward

 if done:

 break

 scores.append(reward_sum)

 return np.mean(scores)

Appendix A Source Code

149

def exploit_explore(session, model, explore_start, explore_

stop, decay_rate, decay_step, state, actions):

 exp_exp_tradeoff = np.random.rand()

 explore_probability = explore_stop + (explore_start -

explore_stop) * np.exp(-decay_rate * decay_step)

 if (explore_probability > exp_exp_tradeoff):

 action = random.choice(possible_actions)

 else:

 Qs = session.run(model.output_layer, feed_dict =

{model.input_matrix: state.reshape((1, 8))})

 choice = np.argmax(Qs)

 action = possible_actions[int(choice)]

 return action, explore_probability

def train_model(environment, dql=None, pg=None, baseline=None):

 scores = []

 done = False

 error_rate, step = 0, 0

 info = {}

 n_episode, reward_sum, score, episode_done = 0, 0, 0, False

 n_actions = len(SpreadTrading._actions)

 observation = environment.reset()

 states = np.empty(0).reshape(0, state_size)

 actions = np.empty(0).reshape(0, len(SpreadTrading._actions))

 rewards = np.empty(0).reshape(0, 1)

 discounted_rewards = np.empty(0).reshape(0, 1)

 observation = environment.reset()

 if baseline == True:

 for episode in range(n_episodes):

Appendix A Source Code

150

 for _ in range(100):

 action = baseline_model(n_actions=n_actions,

 info=info)

 state, reward, done, info = environment.step(action)

 reward_sum += reward

 next_state = np.zeros((state_size,), dtype=np.int)

 step = max_steps

 scores.append(reward_sum)

 �memory.add((state, action, reward, next_state,

done))

 print('Episode: {}'.format(episode),

 'Total reward: {}'.format(reward_sum))

 reward_sum = 0

 environment.reset()

 print(np.mean(scores))

 plt.hist(scores)

 plt.xlabel('Distribution of Scores')

 plt.ylabel('Relative Frequency')

 plt.show()

 plt.waitforbuttonpress()

 plt.close()

 elif dql == True:

 loss = []

 model = DeepQNetworkMM(n_units=n_units,

 n_classes=n_classes,

 state_size=state_size,

 action_size=action_size,

Appendix A Source Code

151

 learning_rate=learning_rate)

 #tf.summary.scalar('Loss', model.error_rate)

 with tf.Session() as sess:

 sess.run(tf.global_variables_initializer())

 decay_step = 0

 for episode in range(n_episodes):

 current_step, reward_sum = 0, []

 state = np.reshape(observation, [1, state_size])

 while current_step < max_steps:

 current_step += 1; decay_step += 1

 �action, explore_probability = exploit_

explore(session=sess,

 model=model,

 explore_start=explore_start,

 explore_stop=explore_stop,

 decay_rate=decay_rate,

 decay_step=decay_step,

 state=state,

 actions=possible_actions)

 �state, reward, done, info = environment.

step(action)

 reward_sum.append(reward)

 if current_step >= max_steps:

 done = True

 if done == True:

Appendix A Source Code

152

 �next_state = np.zeros((state_size,),

dtype=np.int)

 step = max_steps

 total_reward = np.sum(reward_sum)

 scores.append(total_reward)

 �memory.add((state, action, reward,

next_state, done))

 print('Episode: {}'.format(episode),

 �'Total reward: {}'.

format(total_reward),

 'Loss: {}'.format(error_rate),

 �'Explore P: {:.4f}'.

format(explore_probability))

 loss.append(error_rate)

 elif done != True:

 next_state = environment.reset()

 state = next_state

 �memory.add((state, action, reward,

next_state, done))

 batch = memory.sample(batch_size)

 states = np.array([each[0] for each in batch])

 actions = np.array([each[1] for each in batch])

 rewards = np.array([each[2] for each in batch])

 �next_states = np.array([each[3] for each in

batch])

 dones = np.array([each[4] for each in batch])

 target_Qs_batch = []

Appendix A Source Code

153

 �Qs_next_state = sess.run(model.predicted_Q,

feed_dict={model.input_matrix: next_states,

model.actions: actions})

 for i in range(0, len(batch)):

 terminal = dones[i]

 if terminal:

 target_Qs_batch.append(rewards[i])

 else:

 �target = rewards[i] + gamma *

np.max(Qs_next_state[i])

 target_Qs_batch.append(target)

 �targets = np.array([each for each in

target_Qs_batch])

 �error_rate, _ = sess.run([model.error_rate,

model.optimizer], feed_dict={model.input_

matrix: states, model.target_Q: targets,

model.actions: actions})

 if episode == n_episodes - 1:

 market_making(model=model,

 environment=environment,

 sess=sess,

 state=state,

 dpl=True)

 elif pg == True:

 loss = []

Appendix A Source Code

154

 mlp_model = PolicyGradient(n_units=n_units,

 n_layers=n_layers,

 n_columns=8,

 n_outputs=n_classes,

 learning_rate=learning_rate,

 hidden_activation='selu',

 output_activation='softmax',

 l�oss_function='categorical_

crossentropy')

 �policy_model, model_predictions = mlp_model.create_

policy_model(input_shape=(len(observation),))

 policy_model.summary()

 while n_episode < n_episodes:

 state = observation.reshape(1, 8)

 prediction = model_predictions.predict([state])[0]

 �action = np.random.choice(range(len(SpreadTrading._

actions)), p=prediction)

 action = possible_actions[action]

 states = np.vstack([states, state])

 actions = np.vstack([actions, action])

 �observation, reward, episode_done, info =

environment.step(action)

 reward_sum += reward

 rewards = np.vstack([rewards, reward])

 step += 1

 if step == max_steps:

 episode_done = True

Appendix A Source Code

155

 if episode_done == True:

 �discounted_reward = calculate_discounted_

reward(rewards, gamma=gamma)

 �discounted_rewards = np.vstack([discounted_

rewards, discounted_reward])

 discounted_rewards -= discounted_rewards.mean()

 discounted_rewards /= discounted_rewards.std()

 discounted_rewards = discounted_rewards.squeeze()

 actions = actions.squeeze().astype(int)

 �#train_actions = np.zeros([len(actions), n_

actions])

 �#train_actions[np.arange(len(actions)),

actions] = 1

 �error = policy_model.train_on_batch([states,

discounted_rewards], actions)

 loss.append(error)

 states = np.empty(0).reshape(0, 8)

 actions = np.empty(0).reshape(0, 3)

 rewards = np.empty(0).reshape(0, 1)

 discounted_rewards = np.empty(0).reshape(0, 1)

 �score = score_model(model=model_predictions,

n_tests=10)

 �print("'\nEpisode: %s \nAverage Reward: %s \

nScore: %s \nError: %s"'

 �)%(n_episode+1, reward_sum/float(batch_

size), score, np.mean(loss[-batch_

size:]))

Appendix A Source Code

156

 if score >= goal:

 break

 reward_sum = 0

 n_episode += 1

 observation = environment.reset()

 if n_episode == n_episodes - 1:

 market_making(model=model_predictions,

 environment=environment,

 sess=None,

 state=state,

 pg=True)

 if baseline != True:

 �plt.title('Policy Gradient Error plot over %s

Episodes'%(n_episode+1))

 plt.xlabel('N batches')

 plt.ylabel('Error Rate')

 plt.plot(loss)

 plt.show()

 plt.waitforbuttonpress()

 return model

def market_making(model, environment, sess, state, dpl=None,

pg=None):

 scores = []

 total_reward = 0

 environment.reset()

 for _ in range(1000):

Appendix A Source Code

157

 for __ in range(100):

 state = np.reshape(state, [1, state_size])

 if dpl == True:

 �Q_matrix = sess.run(model.output_layer, feed_dict

= {model.input_matrix: state.reshape((1, 8))})

 choice = np.argmax(Q_matrix)

 action = possible_actions[int(choice)]

 elif pg == True:

 state = np.reshape(state, [1, 8])

 predict = model.predict([state])[0]

 action = np.argmax(predict)

 action = possible_actions[int(action)]

 state, reward, done, info = environment.step(action)

 total_reward += reward

 print('Episode: {}'.format(_),

 'Total reward: {}'.format(total_reward))

 scores.append(total_reward)

 state = environment.reset()

 print(np.mean(scores))

 plt.hist(scores)

 plt.xlabel('Distribution of Scores')

 plt.ylabel('Relative Frequency')

 plt.show()

 plt.waitforbuttonpress()

 plt.close()

if __name__ == '__main__':

 train_model(environment=environment, dql=True)

Appendix A Source Code

158

�Chapter 5
�Sonic Example
import cv2, gym, numpy as np

from retro_contest.local import make

from retro import make as make_retro

from baselines.common.atari_wrappers import FrameStack

cv2.ocl.setUseOpenCL(False)

class PreprocessFrame(gym.ObservationWrapper):

 """

 �Grayscaling image from three dimensional RGB pixelated

images

 - Set frame to gray

 - Resize the frame to 96x96x1

 """

 def __init__(self, environment, width, height):

 gym.ObservationWrapper.__init__(self, environment)

 self.width = width

 self.height = height

 self.observation_space = gym.spaces.Box(low=0,

 �high=255,shape=(self.height,

self.width, 1), dtype=np.

uint8)

 def observation(self, image):

 image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)

 �image = cv2.resize(image, (self.width, self.height),

interpolation=cv2.INTER_AREA)

 image = image[:, :, None]

 return image

Appendix A Source Code

159

class ActionsDiscretizer(gym.ActionWrapper):

 """

 Wrap a gym-retro environment and make it use discrete

 actions for the Sonic game.

 """

 def __init__(self, env):

 super(ActionsDiscretizer, self).__init__(env)

 �buttons = ["B", "A", "MODE", "START", "UP", "DOWN",

"LEFT", "RIGHT", "C", "Y", "X", "Z"]

 �actions = [['LEFT'], ['RIGHT'], ['LEFT', 'DOWN'],

['RIGHT', 'DOWN'], ['DOWN'],

 ['DOWN', 'B'], ['B']]

 self._actions = []

 """

 What we do in this loop:

 For each action in actions

 - Create an array of 12 False (12 = nb of buttons)

 �For each button in action: (for instance ['LEFT'])

we need to make that left button index = True

 �- Then the button index = LEFT = True

 �In fact at the end we will have an array where each

array is an action and each elements True of this array

 are the buttons clicked.

 """

 for action in actions:

 _actions = np.array([False] * len(buttons))

 for button in action:

 _actions[buttons.index(button)] = True

 self._actions.append(_actions)

 self.action_space = gym.spaces.Discrete(len(self._actions))

Appendix A Source Code

160

 def action(self, a):

 return self._actions[a].copy()

class RewardScaler(gym.RewardWrapper):

 """

 Bring rewards to a reasonable scale for PPO.

 This is incredibly important and effects performance

 drastically.

 """

 def reward(self, reward):

 return reward * 0.01

class AllowBacktracking(gym.Wrapper):

 """

 Use deltas in max(X) as the reward, rather than deltas

 in X. This way, agents are not discouraged too heavily

 from exploring backwards if there is no way to advance

 head-on in the level.

 """

 def __init__(self, environment):

 super(AllowBacktracking, self).__init__(environment)

 self.curent_reward = 0

 self.max_reward = 0

 def reset(self, **kwargs):

 self.current_reward = 0

 self.max_reward = 0

 return self.env.reset(**kwargs)

Appendix A Source Code

161

 def step(self, action):

 �observation, reward, done, info = self.environment.

step(action)

 self.current_reward += reward

 reward = max(0, self.current_reward - self.max_reward)

 �self.max_reward = max(self.max_reward, self.current_

reward)

 return observation, reward, done, info

def wrap_environment(environment, n_frames=4):

 environment = ActionsDiscretizer(environment)

 environment = RewardScaler(environment)

 environment = PreprocessFrame(environment)

 environment = FrameStack(environment, n_frames)

 environment = AllowBacktracking(environment)

 return environment

def create_new_environment(environment_index, n_frames=4):

 """

 Create an environment with some standard wrappers.

 """

 dictionary = [

 �{'game': 'SonicTheHedgehog-Genesis', 'state':

'SpringYardZone.Act3'},

 �{'game': 'SonicTheHedgehog-Genesis', 'state':

'SpringYardZone.Act2'},

 �{'game': 'SonicTheHedgehog-Genesis', 'state':

'GreenHillZone.Act3'},

 �{'game': 'SonicTheHedgehog-Genesis', 'state':

'GreenHillZone.Act1'},

 �{'game': 'SonicTheHedgehog-Genesis', 'state':

'StarLightZone.Act2'},

Appendix A Source Code

162

 �{'game': 'SonicTheHedgehog-Genesis', 'state':

'StarLightZone.Act1'},

 �{'game': 'SonicTheHedgehog-Genesis', 'state':

'MarbleZone.Act2'},

 �{'game': 'SonicTheHedgehog-Genesis', 'state':

'MarbleZone.Act1'},

 �{'game': 'SonicTheHedgehog-Genesis', 'state':

'MarbleZone.Act3'},

 �{'game': 'SonicTheHedgehog-Genesis', 'state':

'ScrapBrainZone.Act2'},

 �{'game': 'SonicTheHedgehog-Genesis', 'state':

'LabyrinthZone.Act2'},

 �{'game': 'SonicTheHedgehog-Genesis', 'state':

'LabyrinthZone.Act1'},

 �{'game': 'SonicTheHedgehog-Genesis', 'state':

'LabyrinthZone.Act3'}]

 print(dictionary[environment_index]['game'])

 print(dictionary[environment_index]['state'])

 environment = make(game=dictionary[environment_index]['game'],

 state=dictionary[environment_index]['state'],

 bk2dir="./records")

 environment = wrap_environment(environment=environment,

 n_frames=n_frames)

 return environment

def make_test_level_Green():

 return make_test()

Appendix A Source Code

163

def make_test(n_frames=4):

 """

 Create an environment with some standard wrappers.

 """

 environment = make_retro(game='SonicTheHedgehog-Genesis',

 state='GreenHillZone.Act2',

 record="./records")

 environment = wrap_environment(environment=environment,

 n_frames=n_frames)

 return environment

Appendix A Source Code

165© Taweh Beysolow II 2019
T. Beysolow II, Applied Reinforcement Learning with Python,
https://doi.org/10.1007/978-1-4842-5127-0

Index

A
Actor advantage critic (A2C), 11,

38, 47
Actor-Critic model, 11, 37, 103

advantage function, 37
A2C, 38
A3C, 38

Artificial intelligence, 5, 19
Asynchronous advantage

Actor-Critic (A3C), 11, 38, 47

B
baseline_model() function, 88

C
calculate_discounted_reward()

function, 30
Cart Pole game, 125–129
Cart Pole problem

cart_pole_game(), 27
environment_dimension

variable, 27
Keras, 25
neural network, 26, 27
probabilities, 28

coord.join() function, 111
Credit-assignment problem

(cap), 5
Custom OpenAI

A3C Actor-Critic
dynamic run() function, 107
LSTM model, 106
main/master function,

108, 109
model() class, 104
visualization, 103
worker.work() function,

109, 110
download game

commands, 98
steam dashboard, 97

environment code
actions, 102
ActionsDiscretizer(), 101
AllowBacktracting() class,

102, 103
body function, 98
observationWrapper

class, 100
retro_contest” module,

99, 100
Sonic the Hedgehog, 95, 96

https://doi.org/10.1007/978-1-4842-5127-0

166

D
Deep learning, 7, 52
Deep Q Learning (DQL), 10, 11,

14, 53
Differential equations, 2
Discounted rewards

calculate_discounted_reward()
function, 30

cart_pole_game(), 34
cost function, 30
gradient ascent, 34
log-likelihood loss, 32, 33
policy gradient, 35
probability distribution, 29
score function, 31, 34
score threshold, 32

Docker containers
creation, 51
dummy Docker file, 51
virtual environment, 50

Doom, source code, 139–145
Dynamic programming, 2
dynamic_rnn() function, 107

E
Epsilon Greedy algorithm, 59, 60

F
Frozen Lake, 12, 134–138

G
generator() function, 86
Github, 113
Gradient ascent, policy

optimization
maximize score, 24
model-free algorithms, 25
trajectory, 25

Group/baseline algorithm, 87

H, I, J
Hamilton-Jacobi-Bellman (HJB)

equation, 3

K
Keras, 25, 27, 40

L
LeNet architecture, 41

ActorCriticModel() class, 41, 42
batch_normalization(), 43
discount factor, 45
helper function, 43
Model() class, 44
policy_model(), 44
python matrix, 42, 43
Runner() class, 45
train_model() function, 46, 47

Likelihood function, 32, 33

INDEX

167

M, N
Market making

experimental design
baseline_model() function, 88
deep Q network, 91, 92
distribution of scores, 89, 90
Group/baseline algorithm, 87
policy gradients, 90, 91
results, 93
strategies, 89

problems, 82, 83
source code, 146
Trading Gym, 82

generating order book data,
85, 86

synthesizing order book
data, 84

visualization, 81
Markov decision processes (MDPs)

cap, 5
defined, 3
Q learning, 6
TD learning, 6
transition function, 4
visual, 4, 5

Markov decision process (MDPs),
57, 58

Markov reward process (MRP), 4

O
OpenAI, 2, 19, 40, 125
OpenAI Gym, 7, 16, 19, 20

P
Policy-based gradient methods

deterministic policy, 20
drawbacks, 36
error function, 21
high-dimensional spaces, 22
mathematical explanation

machine learning, 23
MDP, 22
probability distribution, 22
trajectory, 23

stochastic policy, 21
Policy gradient, 92, 115, 116
Proximal policy optimization (PPO)

Actor-Critic model, 37
gradient descent, 37
KL divergence, 37

Q
Q learning, 53

Actor-Critic model, 11, 12
definition, 55
double Q networks, 74
DQL

architecture, 69
doom game, 66–68, 70, 71
equation, 65, 66
limitations, 74
performance, 73
training mode, 72

Epsilon Greedy algorithm, 59, 60
flow chart, 11

Index

168

Frozen Lake, 60–62, 64
TD, 57, 58
visualizations, 56, 57

R
Recurrent neural network (RNN),

83, 106, 108
Reinforcement learning (RL)

benefit, 1
history, 2, 3
models, 116–124

RL algorithm
cart pole video game, 8, 10
game, variables, 9
OpenAI gym, 7
process flow, 9

RL applications
classic control, 12, 13
Doom, 14, 15
market making, 15, 16

model utilities, code,
113, 114

Super Mario Bros, 13, 14
RL challenges

AWS, 48
game, main function, 49
Google Cloud, 47, 48
Sonic the Hedgehog, 47
SSH icon, 48

S
Sampling efficiency, 36
score_model() function, 30, 31
Sonic the Hedgehog, 16, 17, 95

source code, 158–163
Super Mario Bros, 39

code structure, 40, 41
gym-super-mario-bros, 40
model architecture (see LeNet

architecture)
source code, 130–133

T, U
Temporal difference (TD) learning,

6, 57–58
tf.train.Coordinator() function,

110, 111
Trajectory, 23
Trial and error learning, 5, 6

V
Value-based methods, 21, 53
Vanilla policy gradients, 36

cart pole problem, 25–28

W, X, Y, Z
WavySignal function, 84–85
worker.work() function, 110

Q learning (cont.)

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Introduction to Reinforcement Learning
	History of Reinforcement Learning
	MDPs and their Relation to Reinforcement Learning
	Reinforcement Learning Algorithms and RL Frameworks
	Q Learning
	Actor-Critic Models

	Applications of Reinforcement Learning
	Classic Control Problems
	Super Mario Bros.
	Doom
	Reinforcement-Based Marketing Making

	Sonic the Hedgehog
	Conclusion

	Chapter 2: Reinforcement Learning Algorithms
	OpenAI Gym
	Policy-Based Learning
	Policy Gradients Explained Mathematically
	Gradient Ascent Applied to Policy Optimization
	Using Vanilla Policy Gradients on the Cart Pole Problem
	What Are Discounted Rewards and Why Do We Use Them?
	Drawbacks to Policy Gradients
	Proximal Policy Optimization (PPO) and Actor-Critic Models
	Implementing PPO and Solving Super Mario Bros.
	Overview of Super Mario Bros.
	Installing Environment Package
	Structure of the Code in Repository
	Model Architecture

	Working with a More Difficult Reinforcement Learning Challenge
	Dockerizing Reinforcement Learning Experiments
	Results of the Experiment
	Conclusion

	Chapter 3: Reinforcement Learning Algorithms: Q Learning and Its Variants
	Q Learning
	Temporal Difference (TD) Learning
	Epsilon-Greedy Algorithm
	Frozen Lake Solved with Q Learning
	Deep Q Learning
	Playing Doom with Deep Q Learning
	Simple Doom Level

	Training and Performance
	Limitations of Deep Q Learning
	Double Q Learning and Double Deep Q Networks
	Conclusion

	Chapter 4: Market Making via Reinforcement Learning
	What Is Market Making?
	Trading Gym
	Why Reinforcement Learning for This Problem?
	Synthesizing Order Book Data with Trading Gym
	Generating Order Book Data with Trading Gym
	Experimental Design
	RL Approach 1: Policy Gradients
	RL Approach 2: Deep Q Network

	Results and Discussion
	Conclusion

	Chapter 5: Custom OpenAI Reinforcement Learning Environments
	Overview of Sonic the Hedgehog
	Downloading the Game
	Writing the Code for the Environment
	A3C Actor-Critic
	Conclusion

	Appendix A: Source Code
	Market Making Model Utilities
	Policy Gradient Utilities
	Models
	Chapter 1
	OpenAI Example

	Chapter 2
	Cart Pole Example
	Super Mario Example

	Chapter 3
	Frozen Lake Example
	Doom Example

	Chapter 4
	Market Making Example

	Chapter 5
	Sonic Example

	Index

