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Introduction

It is a pleasure to return for a third title with Apress! This text will be the 

most complex of those I have written, but will be a worthwhile addition 

to every data scientist and engineer’s library. The field of reinforcement 

learning has undergone significant change in the past couple of years, and 

it is worthwhile for everyone excited with artificial intelligence to engross 

themselves in.

As the frontier of artificial intelligence research, this will be an 

excellent starting point to familiarize yourself with the status of the field 

as well as the most commonly used techniques. From this point, it is my 

hope that you will feel empowered to continue on your own research and 

innovate in your own respective fields.



1© Taweh Beysolow II 2019 
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https://doi.org/10.1007/978-1-4842-5127-0_1

CHAPTER 1

Introduction to 
Reinforcement 
Learning
To those returning from my previous books, Introduction to Deep 

Learning Using R1 and Applied Natural Learning Using Python,2 it is a 

pleasure to have you as readers again. To those who are new, welcome! 

Over the past year, there have continued to be an increased proliferation 

and development of Deep Learning packages and techniques that 

revolutionize various industries. One of the most exciting portions of this 

field, without a doubt, is Reinforcement Learning (RL). This itself is often 

what underlies a lot of generalized AI applications, such as software that 

learns to play video games or play chess. The benefit to reinforcement 

learning is that the agent can familiarize itself with a large range of tasks 

assuming that the problems can be modeled to a framework containing 

actions, an environment, an agent(s). Assuming that, the range of 

problems can be from solving simple games, to more complex 3D games, 

to teaching self-driving cars how to pick up and drop off passengers in a 

1�New York: Apress, 2018.
2�New York: Apress, 2017.
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variety of different places as well as teaching a robotic arm how to grasp 

objects and place them on top of a kitchen counter.

The implications of well-trained and deployed RL algorithms are 

huge, as they more specifically seek to drive artificial intelligence outside 

of some of the narrow AI applications spoken about in prior texts I have 

written. No longer is an algorithm simply predicting a target or label, but 

instead is manipulating an agent in an environment, and that agent has 

a set of actions it can choose to achieve a goal/reward. Examples of firms 

and organizations which devote much time to researching Reinforcement 

Learning are Deep Mind as well as OpenAI, whose breakthroughs in the 

field are among the leading solutions. However, let us give a brief overview 

of the history of the field itself.

�History of Reinforcement Learning
Reinforcement Learning in some sense is a rebranding of optimal control, 

which is a concept extending from control theory. Optimal control 

has its origins in the 1950s and 1960s, where it was used to describe a 

problem where one is trying to achieve a certain “optimal” criterion and 

what “control” law is needed to achieve this end. Typically, we define an 

optimal control as a set of differential equations. These equations then 

define a path toward values that minimize the value of the error function. 

The core of optimal control is the culmination of Richard Bellman’s 

work, specifically that of dynamic programming. Developed in the 1950s, 

dynamic programming is an optimization method that emphasizes the 

solving of a large individual problem by breaking it down into smaller and 

easier-to-solve components. It is also considered the only feasible method 

of solving stochastic optimal control problems and moreover consider in 

general all of optimal control to be reinforcement learning.

Chapter 1  Introduction to Reinforcement Learning
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Bellman’s most notable contribution to optimal control is that of the 

Hamilton-Jacobi-Bellman (HJB) equation. The HJB equation

V x t V x t F x u C x u
u

, , , ,( ) + Ñ ( ) ( ) + ( ){ } =×min ,0

s t ,. . V x T D X( ) = ( )

where V x t,( )  = the partial derivate of V w.r.t. the time variable t. a · b, 
V x t,( )  = Bellman value function (unknown scalar) or the cost incurred 

from starting in state x at time t and controlling the system optimally until 

time T, C = the scalar cost rate function, D = final utility state function,  

x(t) = system state vector, x(0) = an assumed given, u(t) for 0 ≤ t ≤ T.

The solution yielded from this equation is the value function, or 

the minimum cost for a given dynamic system. The HJB equation is 

the standard method by which one solves an optimal control problem. 

Furthermore, dynamic programming is generally the only feasible way 

or method for solving stochastic optimal control problems. One of these 

problems, which dynamic programming was developed to help solve, is 

Markov decision processes (MDPs).

�MDPs and their Relation to  
Reinforcement Learning
We describe MDPs as discrete time stochastic control process. Specifically, 

we define discrete time stochastic processes as a random process in 

which the index variable is characterized by a set of discrete, or specific, 

values (in contrast to continuous values). MDPs are specifically useful for 

situations in which outcomes are partially affected by participants in the 

process but the process also exhibits some degree of randomness as well. 

MDPs and dynamic programming thus become the basis of reinforcement 

learning theory.

Chapter 1  Introduction to Reinforcement Learning
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Plainly stated, we assume based on a Markov property that the future 

is independent of the past given the present. In addition to this, this state 

is considered sufficient if it gives us the same description of the future as if 

we have the entirety of the historical information. This in essence means 

that the current state is the only piece of information that will be relevant 

and that all historical information is no longer necessary. Mathematically, 

a state is said to have the Markov property iff

P S S P S S St t t t+[ ] = + ¼1 1 1| [ | , , ]

Markov processes themselves are considered to be memory-less, 

in that they are random transitions from state to state. Furthermore, we 

consider them to be a tuple (S, P) on a state space S where states change 

via a transition function P, defined as the following:

P S s S sss t t¢ += = =¢ [ |1 ],

where S = Markov state, St = next state.

This  transition function describes a probability distribution, where the 

distribution is the entirety of the possible states that agent can transition 

to. Finally, we have a reward that we receive from moving from one state to 

another, which we define mathematically as the following:

R R S S
G R R R R

s t t

t t t t
k

t k

= =

= + + + +
+

+ + +
-

+

[ |1
1 2

2
3

1

],
g g g

where γ = discount factor, γ ∈ [0, 1], Gt = total discounted rewards,  

R = reward function.

We therefore define a Markov reward process (MRP) tuple as (S, P, R, γ).

With all of these formulae now described, the image in Figure 1-1 is an 

example of a Markov decision process visualized.

Chapter 1  Introduction to Reinforcement Learning



5

Figure 1-1 shows how an agent can, with varying probability, move 

from one state to another, receiving a reward. Optimally, we would learn to 

choose the process that accumulated the most rewards in a given episode 

before we failed given the parameters of the environment. This, in essence, 

is a very basic explanation of reinforcement learning.

Another important component of the development of Reinforcement 

Learning was trial and error learning, which was one method of 

studying animal behavior. Most specifically, this has proven useful for 

understanding basic reward and punishment mechanisms that “reinforce” 

different behaviors. The words “Reinforcement Learning” however 

would not appear until the 1960s. During this period, the idea of the 

“credit-assignment problem” (cap) would be introduced, specifically by 

Marvin Minsky. Minsky was a cognitive scientist who devoted much of 

his lifetime to artificial intelligence, such as his book Perceptrons (1969) 

and the paper in which he describes the credit assignment problem, 

“Steps Toward Artificial Intelligence” (1961). The cap asks how does one 

distribute “credit” for success with respect to all the decisions that were 

Figure 1-1.  Markov Decision Process

Chapter 1  Introduction to Reinforcement Learning
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made in achieving that success. Specifically, many reinforcement learning 

algorithms are directly devoted to solving this precise problem. With this 

being stated, however, trial and error learning largely became less popular, 

as neural network methods (and supervised learning in general) such as 

innovations forwarded by Bernard Widrow and Ted Hoff took up most of 

the interest within the field of AI. However, a resurgence of interest in the 

field is most notable in the 1980s, when temporal difference (TD) learning 

truly takes wind as well as with the development of Q learning.

TD learning specifically was influenced by, ironically, another aspect 

of animal psychology that Minsky pointed out as being important. It comes 

from the idea of two stimuli, a primary Reinforcer that becomes paired 

with a secondary Reinforcer and subsequently influences behavior. TD 

learning itself, however, was largely developed by Richard S. Sutton. He is 

considered to be one of the most influential figures in the field of RL as his 

doctoral thesis introduced the idea of temporal credit assignment. This 

refers to how rewards, particularly in very granular state-action spaces, can 

be delayed. For example, winning a game of chess requires many actions 

before one has achieved the “reward” of winning the game. As such, 

reward signals do not have significant effect on temporally distant states. 

As such, temporal credit assignment solves for how you reward these 

granular actions in such a way that meaningfully affect temporally distant 

states. Q learning, named for the “Q” function that yields the reward, 

builds on some of these innovations and focuses on finite Markov decision 

processes.

With Q learning, this brings us to the present day, where further 

improvements on reinforcement learning are continually being made 

and represent the bleeding edge of AI. With this overview being complete, 

however, let us more specifically discuss what readers can be expected to 

learn.

Chapter 1  Introduction to Reinforcement Learning
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�Reinforcement Learning Algorithms  
and RL Frameworks
Reinforcement learning analogously is very similar to the domain of 

supervised learning within traditional machine learning, although there 

are key differences. In supervised learning, there is an objective answer 

that we are training the model to predict correctly, whether that is a 

class label or a particular value, based on the input features from a given 

observation(s). Features are analogous to the vectors within the given 

state of an environment, which we feed to the reinforcement learning 

algorithm typically either as a series of states or individually from one state 

to the next. However, the main difference is that there is not necessarily 

always one “answer” to solve the particular problem, in that there are 

possibly multiple ways by which a reinforcement learning algorithm could 

successfully solve a problem. In this instance, we obviously want to choose 

the answer that we can arrive at quickest that simultaneously solves the 

problem in as efficient a manner as possible. This is precisely where our 

choice of model becomes critical.

In the prior overview of the history of RL, we introduced several 

theorems which you will be walked through in detail in the following 

chapters. However, being that this is an applied text, theory must also be 

supplied alongside examples. As such, we will be spending a significant 

amount of time in this text discussing the RL framework OpenAI 

Gym and how it interfaces with different Deep Learning Frameworks. 

OpenAI Gym is a framework that allows us to easily deploy, compare, 

and test Reinforcement Learning algorithms. However, it does have a 

great degree of flexibility, in that we can utilize Deep Learning methods 

alongside OpenAI gym, which we will do in our various proofs of 

concepts. The following shows some simple example code that utilizes 

the package and the plot that shows the video yielded from the training 

process (Figure 1-2).
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import gym

def cartpole():

    environment = gym.make('CartPole-v1')

    environment.reset()

    for _ in range(50):

        environment.render()

        action = environment.action_space.sample()

        �observation, reward, done, info = environment.

step(action)

        print("Step {}:".format(_))

        print("action: {}".format(action))

        print("observation: {}".format(observation))

        print("reward: {}".format(reward))

        print("done: {}".format(done))

        print("info: {}".format(info))

When reviewing the code, we notice that when working with gym, we 

must initialize an environment in which our algorithms sit. Although it 

is common to work with environments provided by the package, we can 

also create our own environments for custom tasks (like video games 

not provided by gym). Moving forward however, let us discuss the other 

variables defined worth noting as shown from the terminal output as 

follows.

Figure 1-2.  Cart Pole Video Game
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action: 1

observation: [-0.02488139  0.00808876  0.0432061   0.02440099]

reward: 1.0

done: False

info: {}

The variables can be broken down as follows:

•	 Action – Refers to action taken by the agent within an 

environment that subsequently yields a reward

•	 Reward – Yielded to the agent. Indicates the quality of 

action with respect to accomplishing some goal

•	 Observation – Yielded by the action: Refers to the state 

of the environment after an action has been performed

•	 Done – Boolean that indicates whether the 

environment needs to be reset

•	 Info – Dictionary with miscellaneous information for 

debugging

The process flow that describes the actions is shown in Figure 1-3.

Figure 1-3.  Process Flow of RL Algorithm and Environment
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To provide more context, Figure 1-2 shows a cart and a pole video 

game, where the objective is to successfully balance the cart and the pole 

such that the pole never tilts over. As such, a reasonable objective would be 

to train some DL or ML algorithm such that we can do this. We will tackle 

this particular problem later in the book however. The purpose of this 

section is just to briefly introduce OpenAI Gym.

�Q Learning
We briefly discussed Q learning in the introduction; however, it is 

worthwhile to highlight the significant portion of this text we will utilize to 

discuss this topic. Q learning is characterized by the fact that there is some 

police, which informs an agent of the actions to take in different scenarios. 

While it does not require a model, we can use one, and it specifically 

is often applied for finite Markov decision processes. Specifically, the 

variants we will tackle in this text are Q learning, Deep Q Learning (DQL), 

and Double Q Learning (Figure 1-4).
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We will discuss this more in depth in the chapters that specifically 

reference these techniques; however, Q learning and Deep Q Learning 

each have respective advantages given the complexity of the problem, 

while both often suffering from similar downfalls.

�Actor-Critic Models
The most advanced of the models we will be tackling in this book are the 

Actor-Critic Models, which are comprised of the A2C and A3C. Both of 

these respectively stand for Advantage Actor-Critic and Asynchronous 

Advantage Actor-Critic models. While both of these are virtually the same, 

the difference is that the latter has multiple models that work alongside 

each other and update the parameters independently while the former 

updates its parameters for all of the models simultaneously. These models 

update on a more granular basis (action to action) rather than in an 

episodic manner as many of the other Reinforcement Learning algorithms 

do. Figure 1-5 shows an example of the Actor-Critic Models visualized.

Figure 1-4.  Q Learning Flow Chart
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�Applications of Reinforcement Learning
After the reader has been thoroughly introduced to the concepts of 

reinforcement learning, we will tackle multiple problems where the focus 

will be showing the reader how to deploy solutions that we will be training 

and utilizing on cloud environments.

�Classic Control Problems
Being that the field of optimal control has been around for roughly the 

past 60 years, there are a handful of problems that we will begin tackling 

first that users will see often referenced in other reinforcement learning 

literature. One of them is the cart pole problem, which is referenced in 

Figure 1-2. This is a game in which the user is required to try and balance 

a cart pole using the optimal set of options. Another one of these is shown 

in Figure 1-6, called Frozen Lake, in which the agent learns how to cross a 

lake which is frozen without stepping on the ice that would cause the agent 

to fall through.

Figure 1-5.  Actor-Critic Models Visualized

Chapter 1  Introduction to Reinforcement Learning



13

�Super Mario Bros.
One of the most beloved video games of all time turns out to be one of the 

best ways to display how the use of reinforcement learning in artificial 

intelligence can be applied to virtual environments. With the help of the 

py_nes library, we are able to emulate Super Mario Bros. (Figure 1-7) and 

then utilize the data from the game such that we can train the model to 

play the level. We will focus on one level exclusively and will be utilizing 

AWS resources for this application, giving readers an opportunity to gain 

experience in this task.

Figure 1-6.  Frozen Lake Visualized
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�Doom
A classic reinforcement learning example that we will apply here is 

learning to play a simple level of the video game Doom (Figure 1-8). 

Originally released in the 1990s on the PC, the focus of this video game is 

to successfully kill all the demons and/or enemies you face while making 

it through the entirety of the level. However, this makes for an excellent 

application of Deep Q Learning given the scope of actions, the packages 

available, among other helpful attributes.

Figure 1-7.  Super Mario Bros.
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�Reinforcement-Based Marketing Making
A common strategy for different proprietary trading firms is to make 

money by providing liquidity to participants with the objective of buying 

and selling an asset at any given price. While there are established 

techniques for this strategy, this is an excellent arena to apply 

reinforcement learning to as the objectives are relatively straightforward 

and it is a data-rich field. We will be working with limit order book data 

from Lobster, a web site which contains a large amount of excellent order 

book data for experiments such as this. In Figure 1-9, we can see what an 

example of an order book would look like.

Figure 1-8.  Doom Screenshot
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�Sonic the Hedgehog
Another classic video game that is appropriate for us to utilize different 

models on will be Sonic the Hedgehog (Figure 1-10). Except in this 

particular chapter, we will walk the reader through the process of creating 

their own environment from scratch that they can wrap an environment 

utilizing OpenAI gym and custom software, and then training their own 

Reinforcement Learning algorithm to then solve the problem of the level. 

This again will utilize AWS resources for training, piggybacking off of the 

same processes that were utilized in the other video game examples, 

specifically Super Mario Bros.

Figure 1-9.  Limit Order Book
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�Conclusion
The purpose of this text will be to familiarize readers with how to apply 

Reinforcement Learning in the various contexts that they work in. Readers 

should be familiar with Deep Learning Frameworks such as Tensorflow 

and Keras, from which we will be working to deploy many of the Deep 

Learning models used in conjunction with. While we will take time to 

explain reinforcement learning theory, and some of that which overlaps 

with Deep Learning might be explained, the majority of this text will be 

dedicated to discussing theory and application of RL. With that being said, 

let us begin by discussing the basics of Reinforcement Learning in depth.

Figure 1-10.  Sonic the Hedgehog
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CHAPTER 2

Reinforcement 
Learning Algorithms
Readers should be aware that we will be utilizing various Deep Learning 

and Reinforcement Learning methods in this book. However, being that 

our focus will shift to discussing implementation and how these algorithms 

work in production settings, we must spend some time covering the 

algorithms themselves more granularly. As such, the focus of this chapter 

will be to walk the reader through several examples of Reinforcement 

Learning algorithms that are commonly applied and showing them in the 

context of utilizing OpenAI gym with different problems.

�OpenAI Gym
Before we dive into any concrete examples, let’s first briefly discuss the 

software that the reader will be utilizing for the majority of this text. 

OpenAI is a research institute based in the San Francisco Bay Area. Of 

the many papers that they have contributed within the field of Artificial 

Intelligence, one of the greatest open source contributions they have made 

is the OpenAI “gym.” A package released for python, OpenAI gym provides 

several environments in which users can begin utilizing reinforcement 

learning algorithms. We will utilize this package most specifically for the 

video game environments in which we can train our algorithms; however, 

let us start by trying to understand the package and how to utilize it.
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The basis of gym is the environment. In Chapter 1 we discussed the 

environment, the various variables we defined, as well as the outputs from 

the environment. In each game or environment we make, they will often 

be observed to be different. The cart pole game we play in this chapter 

will be a very small vector; however, the Super Mario Bros. environment 

we work through later will be significantly more complex. However, let us 

start this chapter by looking at the cart pole as well as a new environment 

and trying to understand what precisely we might want to do within this to 

solve the problem. The cart pole problem was described by Barto, Sutton, 

and Anderson (1983) in “Neuronlike Adaptive Elements That Can Solve 

Difficult Learning Control Problem.” The objective in the cart pole problem 

is to keep the pole balanced on the cart. We receive a reward of 1 for every 

frame in which the pole is vertical; however, the game is lost if the pole no 

longer remains vertical in any given frame. We will, instead of focusing on 

the methods they took to solve this problem, however, focus on utilizing 

policy gradient methods, one of the bedrocks of Reinforcement Learning.

�Policy-Based Learning
Policy-based gradient methods focus on optimizing the policy function 

directly rather than trying to learn a value function that would yield 

information on the expected rewards in a given state. Simply stated, we are 

selecting an action separately from choosing to utilize a value function. 

Policies bifurcate into the following classes:

•	 Deterministic – A policy that maps a given state to 

an action(s), specifically where the actions taken 

“determine” what the outcome will be. For example, 

you are typing on a keyboard on a word file. When you 

press “y,” you are certain the character “y” will appear 

on the screen.

Chapter 2  Reinforcement Learning Algorithms
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•	 Stochastic – A policy that yields a probability distribution 

over a set of actions, such that there is a probability that 

the action taken will not be the action that occurs. This 

is specifically used in instances where the environment 

is not deterministic and is an example of a partially 

observable Markov decision process (POMDP).

Policy-based methods have a few specific advantages over value-based 

methods, which are important to keep in mind for the reader during the 

modeling process. Foremost, they tend to converge better on solutions 

than value-based methods. The reason behind this is that we are being 

guided toward a solution by a gradient. Intuitively, gradient methods point 

toward the steepest function we are differentiating. When applied to an 

error function, and used in the form of gradient descent, we will adjust our 

actions that minimize the error function’s value (locally or globally). As 

such, we are generally going to have a feasible solution. In contrast, value-

based methods can yield a considerably larger and more non-intuitive 

range of values between actions of minimal difference. Specifically, we do 

not have the same guarantee of convergence.

Secondly, policy gradients are particularly adept at learning 

stochastic processes whereas value-based functions cannot. While not 

every environment is not stochastic, many practical examples of where 

Reinforcement Learning might hopefully be applied will be stochastic. 

The reasoning behind why value functions fail here is that they require 

explicitly defined environments where actions inside of them will yield 

specific outcomes that must be deterministic. As such, an environment 

which is stochastic does not have to yield the same outcome for the same 

action taken, and as such this makes value-based learning in such an 

environment a null method. In contrast, policy-based methods do not 

need to explore an environment by taking the same action. Specifically, 

there is no exploration/exploitation trade-off (choosing between what 

does where the outcome is known vs. trying an action whose outcome 
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is not known). Thirdly, policy-based methods are significantly more 

effective in high-dimensional spaces, because they are significantly 

less computationally expensive. Value-based methods require that 

we calculate a value for each possible action. If we have a space with 

a considerably high number of actions (or infinite), this will make 

converging on a solution practically impossible. Policy-based methods 

just have us perform an action and adjust the gradient. Now that we have a 

general understanding of policy-based learning methods, let us apply this 

to the cart pole problem.

�Policy Gradients Explained Mathematically
With a broad understanding of policy-based methods, let’s dive head first 

into the mathematical explanation of policy gradients. You should recall in 

the first chapter that we briefly introduced the concept of Markov decision 

processes. We define an MDP as a tuple (S, P, R, γ) such that

R R S Ss t t= =+[ |1 ],

G R R R Rt t t t
k

t k= + + + ++ + +
-

+1 2
2

3
1g g g

With the reward and the value function defined, we can now 

mathematically discuss the policy. The environment itself an agent 

cannot control; however, the agent does have control over what actions 

it makes, within some bound of reason. As such, the policy is defined 

as the probability distribution of all actions during a given state of the 

environment. This is mathematically described as the following:

p A a S st t= =( )| ,

" Î ( ) ÎA A s S St t,

where π = the policy, S= state space, A = action space, At = action at 

timestep t, St = state at timestep t.
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Now, we understand that a policy guides our agent through an 

environment, where certain actions are possible at a given state that 

our environment is in. How and where exactly does the policy gradient 

fit in? The purpose of the policy gradient method is to maximize the 

expected reward assuming the agent has a policy. The policy therefore is 

parameterized by θ, where trajectory is defined as τ. Trajectory is broadly 

defined as the sequences of actions, rewards, and states that we observe 

over the course of a given episode when we follow a given policy. Episodes 

themselves refer to instances in which the agent is still performing some 

set of actions in the environment before we have reached a point where 

either we have reached the objective of the problem or we have failed the 

episode entirely. Therefore, the total reward is mathematically defined as 

r(τ) such that

arg max J rq tp( ) = ( )éë ùû

We then apply the standard machine learning approach, where we find 

the best parameters to maximize the policy gradients through gradient 

descent. As a brief review, the gradient of a function represents the point of 

greatest rate of increase in the function, and its magnitude is the slope of 

the graph in that direction. The gradient is usually multiplied by a learning 

rate, which determines the speed of convergence toward an optimal 

solution for the function. Simply stated, however, the gradient is typically 

defined as the first derivative of a given function. How do we utilize this 

however to optimize a policy choice?
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�Gradient Ascent Applied to Policy 
Optimization
Gradient descent–based optimization is common in different machine 

learning methods, such as linear regression as well as backpropagation for 

weight optimization in multilayer perceptrons. However, gradient ascent is 

what we will utilize here to optimize the policy we choose. Instead of trying 

to minimize the error, we are trying to maximize the score that we get over 

the entirety of the episode that our algorithm will be utilized in. As such, 

the parameter update should look like the following:

q q a qq:= + Ñ ( )J

So the objective of the problem can be stated as the following:

q
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Verbally, we are trying to pick the value of the parameters that 

maximizes the reward yielded for actions taken within a given state. In the 

particular instance that we are modeling, we are trying to pick the weights 

for the network that maximizes the score. We therefore mathematically 

define the derivative of the expected total reward as the following:

Ñ  p pt t p tr r( )éê ùú = ( )Ñ ( )éê ùúlog ,
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The reasoning behind why we take the geometric sum is because, 

according to the theorems laid forth in Chapter 1 on Markov decision 

processes, each of the actions taken are independent from one another. 
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Therefore, the associated cumulative rewards should be calculated in a 

similar fashion. This process is repeated over the length of the trajectory, 

which logically follows the length of a given episode and the associated 

rewards, states, and actions. When we take the log of the total reward, we 

define that mathematically as the following:
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Decomposing all of this, the log of the expected reward is simply the 

cumulative sum of the log of each of the individual rewards that the policy 

yields from an action at a given time, given a state, summed over the 

entirety of the trajectory. The importance of understanding this and what 

is often referred to as “model-free” algorithms that we utilize in RL is that 

implicitly shown in these equations is the fact that we never model the 

environment, because we never know the distribution of the states at all. 

The only thing that we are modeling, in fact, are the rewards. Now with the 

mathematical underpinning of policy gradients explained, let us move on 

next to applying this on a classic control problem: cart pole.

�Using Vanilla Policy Gradients on the Cart 
Pole Problem
For this problem, we will be utilizing Keras, a library known for its  

ability to quickly deploy neural network models. Although we will utilize 

Tensorflow later in this chapter, the models we will deploy here will be a 

part of packages that are defined within the “applied_rl_python/neural_
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networks/models.py” file. In here, users will see classes that I have created 

that will make using these solutions both within and outside of this text 

easier than defining these architectures repetitively:

class MLPModelKeras():

(Code redacted, please see the source code

    def create_policy_model(self, input_shape):

        input_layer = layers.Input(shape=input_shape)

        advantages = layers.Input(shape=[1])

        �hidden_layer = layers.Dense(n_units=self.n_units, 

activation=self.hidden_activation)(input_layer)

        �output_layer = layers.Dense(n_units=self.n_columns, 

activation=self.output_activation)(hidden_layer)

        �def log_likelihood_loss(actual_labels, predicted_

labels):

            �log_likelihood = backend.log(actual_labels * 

(actual_labels - predicted_labels) + (1 - actual_

labels) * (actual_labels - predicted_labels))

            �return backend.mean(log_likelihood * advantages, 

keepdims=True)

        �policy_model = Model(inputs=[input_layer, advantages], 

outputs=output_layer)

        �policy_model.compile(loss=log_likelihood_loss, 

optimizer=Adam(self.learning_rate))

        �model_prediction = Model(input=[input_layer], 

outputs=output_layer)

        return policy_model, model_prediction

What users should take away from this section of code is the fact that 

we are defining a neural network to be used for policy gradient methods, 

specifically here one that can be reused and redefined in other problems 
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moving forward. The benefit of Keras is that it allows you to quickly create 

neural network models that would be significantly more verbose if you had 

utilized Tensorflow. This additional layer of abstraction automates and 

reduces the amount of code that needs to be written to write that same 

neural network model in Keras. In so far as this model is used to solve this 

specific problem, users should look at Figure 2-1 to try and understand the 

problem we are trying to solve with this neural network.

Figure 2-1.  Neural Network for Cart Pole Problem

The input layer represents the environment and its orientation at 

that given state, and the two classes represent the probabilities for the 

respective actions we can take. Specifically, we will choose the action 

with the highest probability of being correct, as this is modeled as a 

classification problem.

Moving forward, let us look at the actual code we will be utilizing  

to solve the problem, found in “chapter2/cart_pole_example.py.”  

This file begins by defining some parameters that are useful to take  

note of. Although gym is frequently updated, this book was written  

using gym version 0.10.5. In this particular version, I suggest that readers 

always define the environment variable globally and later accessing  

the environment’s attributes within different functions. In addition  

to that, defining the “environment_dimension” variable here resets  

the environment initially. Now, let us direct our attention to the  

“cart_pole_game()” function, which is where the majority of the 
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computation will be occurring within this example. Specifically, let us look 

at the body of the code that continues while we have still not lost the game 

within a specific episode:

        �state = np.reshape(observation, [1, environment_

dimension])

        prediction = model_predictions.predict([state])[0]

        �action = np.random.choice(range(environment.action_

space.n), p=prediction)

        states = np.vstack([states, state])

        actions = np.vstack([actions, action])

        observation, reward, done, info = environment.step(action)

        reward_sum += reward

        rewards = np.vstack([rewards, reward])

The beginning of the code should look familiar to readers from the 

example file given in the first chapter; however, there are some slight 

differences. We define an observation variable here, which to begin every 

experiment is the initialized state of the environment. The prediction the 

model yields are the probabilities. The specific action we take here is a 

random sample of the possible actions we can take. The states and actions 

are then appended to a vector which we will utilize later. As usual, we 

then perform an action within the given environment that yields the new 

observation, the current reward, as well as an indication as to whether we 

have failed or are still succeeding within the environment. This process 

continues until we have lost the game, which brings us to the “calculated_

discounted_reward()” function.
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�What Are Discounted Rewards  
and Why Do We Use Them?
As stated earlier, the purpose of policy gradient methods is to utilize 

gradient-based optimization to choose a set of actions that achieve the 

optimal result in the environment given our objectives. We define the 

probability distribution of actions that we can take at a given state as the 

following:

pq a s P a s| |( ) = [ ]

where π = policy, θ = parameter, a = action, s = state.

Being that this is a gradient-based optimization problem, we also want 

to define the cost function, given by the following:

J E rq gpq( ) = å[ ]

The above equation is the policy score function, which is the expected/

average reward of the policy we choose. Because this is an episodic-based 

task, we suggest that the user calculate the discounted reward on the entire 

episode. An example of how this is calculated is given by the following 

equation:

J E G R R R Rk
k1 1 1 2

2
3
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where k = number of steps in episode, G = summed discounted reward,  

γ = discount tuning parameter, R = reward, V = value.
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The calculate_discounted_reward() function gives a vector of the 

discounted reward for every given reward yielded, and then with the vector 

reversed, shown as follows:

def calculate_discounted_reward(reward, gamma=gamma):

output = [reward[i] * gamma**i for i in range(0, len(reward))]

return output[::-1]

We discount the rewards given the value of some tuning parameter 

that we raise to a different power over each step, and the reward being 

what is yielded from the environment given the action we take at that step. 

We then average the discounted rewards vector, which yields the output of 

the cost function for that episode.

discounted_rewards -= discounted_rewards.mean()

discounted_rewards /= discounted_rewards.std()

discounted_rewards = discounted_rewards.squeeze()

Readers will observe the following transformations that we perform 

to the “discounted_rewards” vector. For readers who don’t know, the 

np.array.squeeze() function takes an array with multiple elements and 

concatenates them such that the following is true:

[[1, 2], [2, 3]] -> [1, 2, 2, 3]

The reasoning behind discounted rewards is fairly straightforward in 

that by discounting rewards, we make an otherwise infinite sum finite. 

If we do not discount rewards, the sum of these rewards would grow 

infinitely and therefore we would not be able to converge upon an optimal 

solution.

How do we calculate the score?

In our code, we specifically utilize the “score_model()” function, which 

runs a user-specified number of trials using the trained model to yield 

the average score over these number of trials. This allows us to see, in a 

generalized sense, how the model is performing, rather than looking at one 
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trial in which the model might have performed better due to chance. Our 

score function can alternatively be defined as the following:

J E Rq tp( ) = ( )éë ùû

where R(τ) = expected future reward.

How this is implemented is fairly straightforward; however, let us 

explain the score_model() function shown as follows:

def score_model(model, n_tests, render=render):

(code redacted, please see github)

            �state = np.reshape(observation, [1, environment_

dimension])

            predict = model.predict([state])[0]

            action = np.argmax(predict)

            �observation, reward, done, _ = environment.

step(action)

            reward_sum += reward

            if done:

                break

        scores.append(reward_sum)

    environment.close()

    return np.mean(scores)

You will observe that we will not render the environment standard for 

every time we want to score the model. I recommend this to readers as this 

significantly would slow the training process in addition to being relatively 

uninformative. If you do care to render the model, you should only do so 

once you have a model you feel has reached your benchmarks for a given 

problem.

In this function, we pass through a model, which we train on a batch 

earlier. This model is trained specifically utilizing the states and their 

respective discounted rewards, along with the respective actions we have 
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taken in each of the states. Intuitively, we are trying to train a model to 

become more accurate at predicting how to predict the actions that would 

lead to a specific set of rewards by choosing a random action over each 

iteration. As such, the weights will optimize to yielding the reward given 

the state consistently. Over time, this should produce a model that when 

given a specific state will understand what specifically it would do in order 

to yield a given reward. Therefore, per the framing of the problem, we 

will eventually yield a model that will yield our score threshold because 

the weights are optimized to classify a state correctly for the goal of 

maximizing our score over time.

As with all gradient descent/ascent problems, we have to differentiate 

the objective function so we can calculate the gradient which is therefore 

utilized to optimize the weights. Because we are differentiating a probability 

function, it is recommended that we utilize a logarithm (this is why we 

utilize a log-likelihood loss for the error function defined on the backend in 

neural_networks/models.py). Let us look at the plot of a likelihood function 

vs. the log likelihood of that function (Figures 2-2 and 2-3).
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Figure 2-2.  Likelihood Function

Figure 2-3.  Log-Likelihood Function
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The derivative of the score function is given by the following:

	
Ñ Ñq p qq p q tJ E log s a R( ) = ( )( ) ( )éë ùû, ,                                   (2.8)

Because of utilizing gradient ascent, we are most likely to move the 

parameters most in the direction that maximizes the reward yielded from 

the environment.

After we have updated our parameters with batch training, we must 

re-initialize the states, actions, and rewards vectors as being empty. To 

summarize what the cart_pole_game() function is doing, after having 

discussed this in detail, here is the process flow:

	 1.	 Initialize variables that will be populated by 

interacting with the environment in their  

respective states.

	 2.	 In a given episode, perform actions until the game 

has been lost. Given a state, use the model to predict 

the best action to action. Append the states, actions 

taken within those states, and rewards yielded in 

that state.

	 3.	 Calculate the discounted rewards and then use 

those rewards to train on a batch of states, actions, 

and rewards.

	 4.	 Score the trained model and repeat until 

convergence on performance threshold determined 

by user.

With our code fully explained, we now can execute it and watch the 

results. When the user executes the code, the results shown in Figures 2-4 

and 2-5 should be seen.
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Figure 2-4.  Example Output from Policy Gradient Problem

Figure 2-5.  Error Plot from Policy Gradient Problem
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This specific solution converged in approximately 5000–6000 

episodes over multiple experiments, with our goal set at 190. We have 

now completed an example of an episodic problem and one in a discrete 

problem space. Now that we know the type of problems we can utilize 

vanilla policy gradients in, where would it be the case that we could not 

utilize policy gradients?

�Drawbacks to Policy Gradients
One of the larger criticisms of reinforcement learning worth addressing 

at this stage is the sampling efficiency of policy gradients and in RL at 

large. Sampling efficiency refers to the degree to which our algorithm 

is able to learn more quickly by only using the states that yield the most 

important information to learn from. Specifically, policy gradients do not 

discriminate between the individual actions taken within an episode. 

Meaning, if the actions we took during an episode lead to a high reward, 

even if some subset of these actions were very suboptimal, we conclude 

that those set of actions were all good. We can only learn how to choose 

an optimal policy by usually iterating through non-optimal policies. This 

has been mitigated by important sampling; however, that is a technique 

utilized in off-policy learning which we will discuss later. However, this 

drawback is not exclusive to policy gradients. In addition to this, policy 

gradients can have a tendency to converge on local maxima rather than a 

global maximum as many gradient descent–based methods often can. This 

also contributes to a greater difficulty in training an appropriate model. 

To solve some of these issues, we can instead choose to update on a more 

granular level than the episodic scheme taken in vanilla policy gradients 

as shown previously. This leads us to our next topic, Proximal Policy 

Optimization.
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�Proximal Policy Optimization (PPO) 
and Actor-Critic Models
PPO specifically deals with policy gradient tendencies to get stuck in local 

maxima by imposing a penalty on the objective function and then utilizing 

gradient descent on this newly reformed gradient descent. Such that the 

equation looks like the following:

max
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(2.9)

where β = tuning parameter, KL = KL divergence, 


At  = advantage function.

The basic intuition behind this adaptive penalty is that we utilize the 

KL divergence between the old and the new policy, which will change over 

each iteration within an episode. If the value from the KL divergence is 

higher than the target value δ, we shrink the tuning parameter. However, 

if it falls below the target value δ, we expand the region in which we are 

willing to search for different parameters. The benefit to adding the penalty 

is that it ensures that the area in which we search for the parameters to 

define the policy is significantly smaller and adjusts based on the degree 

of correctness on a much more granular level than episodic. That way, 

bad actions within an episode will be penalized directly rather than 

being averaged out across other decisions that might have been good. 

This stepwise rather than episodic change is the key component to the 

Actor-Critic model, on which PPO is based. In this instance, the tuning 

parameter tied with the KL divergence is the critic model with the policy 

being the actor.

The advantage function will be a key component of Actor-Critic 

models, which we utilize instead of a value function to the algorithm’s 

decision-making process. The reasoning here is because value functions 

have high variability, whereas advantage functions more clearly convex 
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functions. The intuition behind how the gradient optimization is that 

our parameters will optimize in directions where the advantage function 

is above 0 and will move away from parameter choices where gradients 

are below 0. Next, we define the advantage function which we will utilize 

instead of a value function:

A s a Q s a V s, ,( ) = ( ) - ( )

where Q(s, a) = Q value for action a in state s, V(s) = average value of states s.

Actor-Critic models bifurcate into two strategies: (1) Actor Advantage 

Critic (A2C) and (2) Asynchronous Advantage Actor-Critic (A3C). Both of 

these algorithms work as we have briefly described Actor-Critic models; 

however, the only difference is that A3C does not update the global 

parameters for every actor at the same time (at the end of every iteration), 

hence the asynchronous description. The training will be faster for A2C in 

this instance.

Let us inspect this algorithm more closely, however, by applying it 

to a slightly more difficult game than cart pole, Super Mario Bros, and 

solving the solution more directly.

�Implementing PPO and Solving  
Super Mario Bros.
For this model, we will be utilizing code that is provided within some of 

the packages that I have created as well as open source libraries. Although 

the game can be changed, users should also feel free to try and solve this 

problem utilizing other problems. Because of the training time that is 

associated with A3C, I am going to utilize A2C. In addition to this, I will 

briefly walk users through how to set up a Google Cloud instance for 

training, which is recommended for any reinforcement learning–based 

task such as this.
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�Overview of Super Mario Bros.
Super Mario Bros. (Figure 2-6) is a relatively simple but classic video game 

that allows users to see the power of reinforcement learning without 

adding some of the complexity that we will see in other video game 

environments later in the book. The player has a number of actions that 

can be utilized, which are listed at https://github.com/Kautenja/gym-

super-mario-bros/blob/master/gym_super_mario_bros/actions.py.

Figure 2-6.  Super Mario Bros. Screenshot

The objective of every level is the same: We are trying to avoid all 

obstacles and enemies so we can touch the flag pole at the end to win 

the level. The flag pole will always be at the rightmost end of the level, 

and although there are other bonuses such as mushrooms and brief 

invincibility that we can gain, those are not the primary goals. For this 

example, we will not specifically worry about the separate goal of most 

users, which is to reach the flag, since this will likely be very difficult to 

train a model for and is only an added bonus.
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�Installing Environment Package
For this particular environment, users are encouraged to utilize gym-

super-mario-bros which can be installed utilizing the following command:

pip3 install gym-super-mario-bros

Super Mario Bros. is not a standard environment provided in the 

gym package, so an environment needs to be created. Thankfully, this 

open source package takes care of that task so we can focus on the model 

architecture for this problem. We will work with Tensorflow directly this 

time rather than Keras but will access a class from the “neural_networks/

models.py” directory.

�Structure of the Code in Repository
Unlike the prior example, from this point forward readers should 

anticipate that they will need to reference the model architecture as it is 

defined in different files within the repository such as under the “neural_

neworks” and “algorithms” directories. In this specific example, the 

structure of the code is as follows:

•	 The A2C Actor-Critic Model is defined in “models.py” 

as a class.

•	 “algorithms/actor_critic_utilities” contains the 

Model and Runner classes. These, including the 

ActorCriticModel, are all instantiated within the learn_

policy() function defined within this file. This is the 

function in which most of the computation will end up 

occurring.

These classes and functions are taken from the baselines library 

released by OpenAI and slightly modified. The reasoning behind this is 

that rather than working through this manually, it is important for the 
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reader to understand why and how these models work rather than simply 

calling them. As such, let us first begin by discussing the model we are 

using and why.

�Model Architecture
For this problem, we will be treating this as an image recognition 

problem. As such, we will be using a simple LeNet Architecture, which is 

a type of Convolutional Neural Network architecture. Popular for image 

recognition, these were first developed by Yann LeCun in the late 1980s. 

Figure 2-7 shows a typical LeNet Architecture.

Figure 2-7.  LeNet Architecture

We will treat each frame as a picture, convolve over this frame to create 

feature maps, and then continuously reduce the dimensionality of these 

feature maps until we reach our softmax encoded output vector from 

which we will randomly choose actions and then eventually train on this 

batch in the same way we did in the prior vanilla policy gradient example. 

Readers will now observe the code that details the ActorCriticModel() class 

that we have created that contains the model architecture and relevant 

attributes:

        self.distribution_type = make_pdtype(action_space)

        height, weight, channel = environment.shape

        environment_shape = (height, weight, channel)
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        �inputs_ = tf.placeholder(tf.float32, [None, 

environment_shape], name="input")

        self.distribution_type = make_pdtype(action_space)

        height, weight, channel = environment.shape

        environment_shape = (height, weight, channel)

        �inputs_ = tf.placeholder(tf.float32, [None, 

environment_shape], name="input")

        scaled_images = tf.cast(inputs_, tf.float32)/float(255)

        �layer1 = tf.layers.batch_normalization(convolution_

layer(inputs=scaled_images,

filters=32,

kernel_size=8,

strides=4,

gain=np.sqrt(2)))

(code continued later)

Before we speak about the implementation of the Actor-Critic Model 

to the Super Mario Bros. level, let us briefly discuss what we should do 

to preprocess our image data and how it needs to move through the 

CNN. Images typically are 256 bits and contain 3 dimensions. What this 

means when we process an image into a python matrix is that the matrix 

yielded initially should be of dimensions m x n x 3, where m and n are 

the length and width, respectively, with each dimension of the matrix 

representing a color channel. Specifically, we typically expect the color 

channels to represent red, green, and blue. In the instance of Super Mario, 

we expect the matrix to appear as in Figure 2-8.
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To initially reduce complexity of the images, we will grayscale them so 

that the initially three-dimensional matrix becomes a one-dimensional 

matrix. The 256 bits each represent a degree of brightness of color with 

1 being black and 256 being white. Because python data structures are 

indexed by 0, 255 is the upper bound, and as such will be what we scale 

our input images by. Now that we’ve focused on how we will preprocess 

our data, that brings us to the first of the convolutional layers that we will 

be moving through.

Readers will notice that the layers that we make here are  

utilizing a function that uses a helper function around the convolution 

layer function native to Tensorflow. In addition to this, we utilize the 

batch_normalization() on each of the convolutional layers. As stated 

earlier, the feature maps we will create continue to get smaller. The data 

that remains is, in theory, the pixels that are the most informative for 

classification purposes moving forward. Now, we move forward until 

we flatten all of the feature maps into one array, which we then use to 

compute V(s). This function’s output, as well as other important values, is 

defined as attributes which we will call during the training of this model. 

Figure 2-8.  Example of Super Mario Image Matrix (Before 
Preprocessing)
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Moving forward from the ActorCriticModel, let us discuss the Model() 

class, whose code is shown as follows:

class Model(object):

    �def __init__(self, policy_model, observation_space, action_

space, n_environments,

                 �n_steps, entropy_coefficient, value_

coefficient, max_grad_norm):

(code redacted, please see github)

        �train_model = policy_model(session, observation_

space, action_space, n_environments*n_steps, n_steps, 

reuse=True)

        �error_rate = tf.nn.sparse_softmax_cross_entropy_with_

logits(logits=train_model.logits, labels=actions_)

        mean_squared_error = tf.reduce_mean(advantages_ * error_rate)

        �value_loss = tf.reduce_mean(mse(tf.squeeze(train_model.

value_function) ,rewards_))

        �entropy = tf.reduce_mean(train_model.distribution_type.

entropy())

        �loss = mean_squared_error - entropy * entropy_

coefficient + value_loss * value_coefficient

(code continued later)

In the code, we start with “policy_model()” which is in actuality the 

ActorCriticModel() class that we discussed earlier. After this has been 

instantiated and passed through this class, we take the error rate from the 

individual iteration as it would have occurred within the Model() class. 

What readers see immediately should be familiar from standard neural 
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network training utilizing Tensorflow. Moving forward, let us inspect the 

Runner() class

class Runner(AbstractEnvRunner):

    �def __init__(self, environment, model, nsteps, total_

timesteps, gamma, _lambda):

        �super().__init__(environment=environment, model=model, 

n_steps=n_steps)

        self.gamma = gamma

        self._lambda = _lambda

        self.total_timesteps = total_timesteps

    def run(self):

        �_observations, _actions, _rewards, _values, _dones = 

[],[],[],[],[]

        for _ in range(self.n_steps):

            �actions, values = self.model.step(self.obs, self.

dones)

            _observations.append(np.copy(self.observations))

            _actions.append(actions)

            _values.append(values)

            _dones.append(self.dones)

            �self.observations[:], rewards, self.dones, _ = 

self.environment.step(actions)

            _rewards.append(rewards)

(code continued later!)

Readers will observe that we have defined in the previous section 

of code some variables that we saw in the last example. Specifically, we 

define gamma which will be utilized as a discount factor. Again, it is 

significantly easier for gradient descent to work with smaller gradients 

to optimize weights than it is for the network to work with larger values. 
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As we go through each of the iterations through the maximum amount 

of steps we are allowed to take through this environment, we append to 

the observations, actions, values, rewards, and the Boolean term which 

determines whether we have failed or are still playing the current episode.

(code redacted, please see Github)

delta = _rewards[t] + self.gamma * nextvalues * 

nextnonterminal - _values[t]

            _advantages[t] = last_lambda = delta + self.gamma * 

self._lambda * nextnonterminal * last_lambda

        _returns = _advantages + _values

        �return map(swap_flatten_axes, (_observations, _actions, 

_returns, _values))

In the code, we move to the end of the function, where we calculate the 

delta, or the difference between each individual step with respect to the 

rewards, lambda, returns, etc. This finally leads us to the “train_model()” 

function, shown as follows:

    model = ActorCriticModel(policy=policy,

           obsevration_space=observation_space,

           action_space=action_space,

           n_environments=n_environments,

n_steps=n+steps,

entropy_coefficient=entropy_coefficient,

value_coefficient=value_coefficient,

max_grad_norm=max_grad_norm)

    model.load("./models/260/model.ckpt")

    runner = Runner(environment,

                    model=model,

                    n_steps=n_steps,

                    n_timesteps=n_timesteps,
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                    gamma=gamma,

                    _lambda=_lambda)

 (code redacted please see github)

As readers have been introduced to these functions, they are now 

instantiated given the hyperparameters we define at the header of the file 

as well as within the train_model() function. From this point, the processes 

that readers see should mirror that of the prior example, with respect 

to training the model. Now that we have given a proper overview of this 

example, let us discuss the challenges of trying to train a model like this 

and results that we observed.

�Working with a More Difficult 
Reinforcement Learning Challenge
The cart pole problem and other classic control problems within RL 

are relatively easy in that it will not take an inordinate amount of time 

for whatever method you choose to converge on an optimal solution. 

For more abstract problems, however, particularly those similar to this 

example, training times can increase exponentially for the task. For 

example, there are implementations of A2C and A3C that have been 

applied to Sonic the Hedgehog that still cannot complete a level after 10 

hours. Although there are complexities in that example that aren’t present 

here in Super Mario Bros., the same point should be taken to heart. As 

such, for a problem like this, we are going to need to use a cloud solution. 

While we will go over AWS and how to use it at a later point, I think it is 

important for readers to learn other frameworks as well. Because of this, 

we will work with Google Cloud. As an added bonus, they still give free 

credits to new users, which will make using this code significantly easier.

Any data scientist or machine learning engineer will reach a point 

where the solutions they want to make should be productionized and 
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experimented with utilizing cloud resources. AWS and Google Cloud are 

two solutions that readers should become familiar with not only will come 

across a point at which it makes sense to start putting code in production. 

An example of the Google Cloud Dashboard is given as such in Figure 2-9.

Readers should expect when clicking the SSH icon that they will load 

a (assumedly here Linux) terminal which will require some standard 

installation (installing Git, different python packages, etc.). Nothing that 

the user does here will be terribly different from what they have done 

on their local machine; however, there will be some syntax differences 

assuming that you are utilizing Linux.

The important part from this section is to understand that you should 
be training solutions such as these on Cloud Resources AND NOT on 
your local machine.

Figure 2-9.  Example of Google Cloud Dashboard
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Let us now look at the main function which will actually run  

the game itself:

def play_super_mario(policy_model=ActorCriticModel, 

environment=environment):

    (code redacted, please see github)

        observations = environment.reset()

        score, n_step, done = 0, 0, False

        while done == False:

            actions, values = model.step(observations)

            import pdb; pdb.set_trace()

            for action in actions:

                �observations, rewards, done, info = 

environment.step(action)

                score += rewards

                environment.render()

  n_step += 1

        print('Step: %s \nScore: %s '%(n_step, score))

        environment.close()

With this last piece of code, we have reviewed all of the necessary 

classes. The final part that we should discuss here is implementing the 

training processes smoothly. For this, I recommend that users familiarize 

themselves with docker.
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�Dockerizing Reinforcement Learning 
Experiments
When you are training a reinforcement learning agent, you will likely not 

want to sit and stare at the agent familiarizing itself with the environment 

via optimizing its policy and you will most certainly still need your 

computer in the many hours that you are utilizing to train it. As such, this 

is why we utilize cloud resources. However, just running your application 

on a cloud environment will not be sufficient. On AWS or Google Cloud, 

if you do not run the process in the background, the moment at which the 

connection is lost, either because your computer died, froze, etc., you will 

lose all of your progress and have to start either from the last checkpoint 

or from the beginning depending on whether you have modified the code 

to save along certain checkpoints. As such, it is important that you utilize 

docker containers.

Docker containers are an interesting solution that allow you to create 

a virtual environment of the application that you are running from a 

terminal. Simply stated, you can create a virtual “instance” that quickly 

spins up your application and runs it from this virtual environment. 

Another added benefit is that docker includes several commands that can 

help you by running a process such as this and restarting it in case it stops. 

In the context of the task we are performing here, we can terminate the 

process once we have felt we have trained our agent long enough, check 

the progress of our agent afterward, and then return to training if we deem 

necessary. First, let us look at an example Docker file.
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Figure 2-10 is a dummy Docker file where we see three commands 

that we will review. Specifically, they are “FROM,” “COPY,” and “RUN.” 

“FROM” is what we define the version of python in which we would like 

this container to run. Although there are some examples in this book that 

utilize python2, all should be compatible with python3, and python2 will 

be not supported past 2020. Moving forward, “COPY” indicates the specific 

files within a repository that we want to use. Finally, we get to “RUN” 

where we specifically install the python packages that we need.

It is important to note that you must indicate all of the necessary 
files, repositories, and python modules in your docker file when 
you instantiate a new container. If you do not do this, your docker 
container will not be able to execute the code.

We typically create a container with the following command:

"sudo docker –t build . [container name] . "

Figure 2-10.  Example Docker File
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Assuming docker is installed and no files that we are copying are 

missing, this should create a docker container by the name specified. After 

this step, users are suggested to run the following command to commence 

the file.

"sudo docker run --dit --restart-unless-stopped python3 –m 

path.to.file"

�Results of the Experiment
This was largely done for illustrative purposes; however, it is useful 

when working through more difficult reinforcement learning problems 

to highlight this point – you must train your agent for a large amount 
of time. Unlike some of the more vanilla machine learning examples, 

and more similar to difficult natural language processing problems that 

utilize deep learning, training will take a very long time to be effective. 

In this particular instance, the agent usually runs out of time because 

it gets stuck on some obstacle like a pipe relatively early on, or it gets 

unlucky and gets killed relatively quickly by an enemy combatant like 

a goomba. When the agent is trained for 5 hours, we observe generally 

that it performs significantly better, most specifically notified by the fact 

that it is now able to avoid dying, by and large, from any of the enemies 

in the space. However, it does get caught on obstacles and is not likely to 

backtrack to find alternative paths forward should it get stuck. The most 

successful agents were those trained for above 12 hours; however, this 

solution generally is not finished nor is it necessarily perfect. Much of the 

success of the agent often seems to be determined by the actions that it 

takes at critical points, particularly timing jumps properly, and it tends to 

avoid killing enemies as much as it prefers trying to not fall into the holes 

in the level. On some occasions, this allows Mario to win; however, what is 

important to note is that this is one of the more simple levels that the game 

features.

Chapter 2  Reinforcement Learning Algorithms



53

�Conclusion
Readers after this chapter should feel comfortable in applying some 

basic and one more advanced type of Reinforcement Learning algorithm 

which are based on episodic and temporal difference methods. The key 

takeaways from the chapter are the following:

•	 Understand the problem type you are tackling – 

Similar to most machine learning problems, there 

are different models to use for different types of data. 

Are you dealing with a large state space? Is your task 

episodic? If not, do you realistically want/need to base 

the learning of the algorithm on more granular steps? 

Take time to think about these before you approach the 

solutions.

•	 Training RL solutions on difficult problems is time-
consuming, so train on cloud resources – Similar to 

some advanced NLP problems, readers will observe 

that local machines are not the place to be training 

models on. Although it obviously makes sense to be 

writing most of the code from your local machine, seek 

to utilize these somewhere else.

With the first type of algorithms now completed, we will move forward 

to tackling different value-based methods such as Q learning and Deep Q 

Learning. In the upcoming chapter, we will again take the same precedent 

of dealing with a more simple problem and then moving to a more 

complex problem with a considerably larger environment.
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CHAPTER 3

Reinforcement 
Learning Algorithms: 
Q Learning and Its 
Variants
With the preliminary discussion on policy gradients and Actor-Critic 

Models finished, we can now discuss alternative deep learning algorithms 

that readers might find useful. Specifically, we will discuss Q learning, 

Deep Q Learning, as well as Deep Deterministic Policy Gradients. Once 

we have covered these, we will be well versed enough to start dealing with 

more abstract problems that are more domain specific that will teach the 

user about how to approach reinforcement learning to different tasks.

�Q Learning
Q learning is a part of a family of model-free learning algorithms which 

learns a policy by looking at all of the possible actions and evaluating 

each of them. In this algorithm, there are two matrices which we will 

frequently reference: the Q matrix and the R matrix. The former represents 

the algorithm’s namesake and contains the accumulated knowledge on 

the environment in which we are implementing a policy. All of the entries 
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in this matrix are initialized at 0 and the goal is to maximize the reward 

yielded. Upon each step in the environment, the Q matrix is updated. The 

R matrix is the environment where each row represents a state and the 

columns represent the awards for moving to another state. The structure of 

this matrix is similar to a correlation matrix, where each row and column 

index mirror one another. We have visualizations of both a Q and an R 

matrix in Figures 3-1 and 3-2.

Figure 3-1.  Visualization of Q Table

Figure 3-2.  Visualization of R Table
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The agent can see the R table with respect to the immediate actions it 

can take within it, but cannot see anything else. Because of this limitation, 

this is precisely where the Q table becomes important. The Q table as 

mentioned earlier contains all of the accumulated information about the 

environment that it populates over a given period. In some sense, we can 

think of the Q table as the map and the R table as the world. Specifically 

how the Q table is updated is given by the following:

Q s a Q s a r s a Q s a Q s at t t t t t t t t t, , , , ,( ) = ( ) + ( ) + ( ){ }( ) - (+ +: .maxa g 1 1 ))é
ë

ù
û

where Q(st  , at) = the cell entry, α = learning rate, γ = discount factor, 

max{Q(st + 1 , at + 1)}) = maximum Q table value.

�Temporal Difference (TD) Learning
In the introduction chapter, we briefly touched upon the topic of Markov 

decision process. To reiterate more specifically, MDPs refer to events 

that are partially random but also are dependent upon or in control of a 

decision maker. We define a MDP as the following 4-tuple:

S A P Ra a, , ,( )

where S = set representing the states, A = set representing the allowable 

actions, Pa = probability that action a in state s at time t results in state sʹ at 

time t + 1 , Ra= immediate reward received after transitioning from state s 

to state sʹ due to action a.

As a reminder, Figure 3-3 is an example of the Markov decision-making 

process.
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As we have stated earlier, most of reinforcement learning revolves 

around states from which we can perform actions that yield a reward as 

well. The goal we are trying to reach is choosing the optimal policy for the 

decision maker that maximizes the reward yielded. We briefly brought up 

temporal difference learning in the introduction, but now is an appropriate 

time to discuss this at length.

TD learning is broadly described as a method to predict a quantity that 

depends on the future values of a specific signal. It refers to the “temporal 

differences” in predictions over varying timesteps. TD learning is designed 

such that the prediction at a current timestep is updated to so that the 

following prediction for the next timestep is correct. Q learning itself is 

an example of TD learning. One way in which we can solve a TD learning 

problem, specifically as it manifests here, is the epsilon-greedy algorithm.

Figure 3-3.  Markov Decision-Making Process

Chapter 3  Reinforcement Learning Algorithms: Q Learning and Its Variants



59

�Epsilon-Greedy Algorithm
Eventually, after a large amount of iterations, the Q table is good enough to 

be utilized directly by an agent. To get to this point, we want the Q learning 

algorithm to utilize the information in the table less than it explores. This is 

what at large is described as the exploration-exploitation trade-off, and it is 

controlled by the epsilon parameter. The key here is that the first possible 

path that might be utilized to reach a solution is not guaranteed to be the 

best path. With this being stated, it is unlikely that it will always be the case 

that if we keep searching, we will find a better solution than the current 

one, and therefore we abstain from solving the problem. To mitigate this 

issue, it is recommended to use the epsilon-greedy algorithm.

Epsilon-greedy algorithm is within the family of the multi-armed 

bandit problem. This is described as a problem where we must choose 

between a variety of options with the end goal of maximizing a reward. The 

classic example to illustrate this problem is to imagine a casino where we 

have four machines, each with different unknown reward probabilities. 

We describe a Bernoulli multi-armed bandit as a set actions and rewards 

represented respectively in the tuple <A, R> where there are K machines 

with reward probabilities {θ1, …, θK}. Each action corresponds to an 

interaction with a respective slot machine, and rewards are stochastic 

in that they will return with a probability of Q(at) or 0 otherwise. The 

expected reward is represented as the following equation:

Q a r a k kk k k k( ) = [ ] = Î ¼{ } | , ,q , 1

And our goal is to maximize the cumulative reward by choosing the 

optimal actions, where the optimal reward probability and loss functions 

are given respectively by the following equations:

q q* *

Î £ £
= ( ) = ( ) =Q a Q a

a A i K imax max
1
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Although there are multiple ways to solve the multi-armed bandit 

problem, we will focus here on the   strategy. This is an algorithm that 

estimates the quality of the action via the following equation:

where Nt(a) = number of times action a has been taken,  = binary 

indicator function.

If ϵ is small, then we will explore our immediate environment. 

However, otherwise, we will utilize the best possible action that we know at 

this moment. To illustrate the entirety of the Q learning algorithm, we will 

learn to play a game called “Frozen Lake.”

�Frozen Lake Solved with Q Learning
Frozen Lake is a game provided in Gym in which the player is trying to  

train an agent to walk across a lake from a starting point to another end  

point on the lake. However, not all of the patches of ice are frozen, in which 

stepping on this would cause us to lose the game. We do not receive 

any rewards except for reaching the goal. Readers can imagine the 

environment looking like the following image (Figure 3-4).

Chapter 3  Reinforcement Learning Algorithms: Q Learning and Its Variants



61

Similar to most of the other files we have written, we started by 

defining the parameters we can use later as well as the environment. The 

two main functions populate_q_matrix() and play_frozen_lake() contain 

within them many of the helper functions defined earlier. Let’s start first by 

walking through the function that populates the Q matrix.

def populate_q_table(render=False, n_episodes=n_episodes):

(documentation redacted, please see github)

    for episode in range(n_episodes):

        prior_state = environment.reset()

        _ = 0

        while _ < max_steps:

            if render == True: environment.render()

            action = exploit_explore(prior_state)

Figure 3-4.  Frozen Lake Environment
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            observation, reward, done, info = �environment.

step(action)

            update_q_matrix(prior_state=prior_state,

                            observation=observation,

                            reward=reward,

                            action=action)

      (CODE TO BE CONTINUED)

Walking through the code up to the second helper function, update_q_

matrix(), we see that we define a number of episodes over which we will 

populate the Q table. Readers can add more or less episodes and see how 

the performance changes, but here we have chosen 10,000 episodes. We 

now come to our first helper function, exploit_explore(). This self-evidently 

is the algorithm which performs the epsilon-greedy exploration algorithm 

to determine what of those two actions we should take. The following 

function describes this in detail.

def exploit_explore(prior_state, epsilon=epsilon):

(documentation redacted, please read github)

    if np.random.uniform(0, 1) < epsilon:

        return environment.action_space.sample()

    else:

        return np.argmax(Q_matrix[prior_state, :])

As readers can see, we only explore with a random action in the 

instance that the value we randomly pull from the uniform distribution is 

0. Otherwise, we choose the best possible action we are aware of given that 

state. Moving forward in the body of the larger function, continue as we 

have in prior examples by having the agent perform an action within the 

environment. This yields the difference; however, now we must update the 

Q matrix.
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def update_q_matrix(prior_state, observation , reward, action):

prediction = Q_matrix[prior_state, action]

    �actual_label = reward + gamma * np.max(Q_

matrix[observation, :])

    �Q_matrix[prior_state, action] = Q_matrix[prior_state, 

action] + learning_rate*(actual_label - prediction)

Per the earlier equation, we update the Q matrix’s entry where each 

column represents an action to be taken and each row represents a 

different state. We continue this process within each episode until we 

either hit the maximum number of steps we are allowed to take or we fall 

through the ice. Once we have reached the maximum number of episodes, 

we are ready to play the game using our Q table. Readers should observe 

the game when it is running in the terminal to appear as in Figure 3-5.
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The terminal will output messages when you win or lose during a 

given episode. We generally observe over multiple experiments using the 

parameters provided that the agent will generally win two to three times 

over 10 episodes and will reach a solution in approximately 20–30 steps.

The main advantage to Q learning to some degree is that it does not 

require a model and that the algorithm is fairly transparent. It is easy to 

explain why the agent at a given state in time will choose an action. With 

that being said, the main drawback to this is that the experience necessary 

to gain knowledge of what to do at a given state is very computationally 

Figure 3-5.  Frozen Lake Game
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expensive when we are dealing with very large environments if we are 

to sufficiently fill the Q matrix with information. While this frozen lake 

example is fairly constrained, environments such as more complex video 

games will likely take an exceptionally long time to get a good Q table.  

To overcome this limitation, Deep Q Learning was designed.

�Deep Q Learning
Deep Q Learning is fairly straightforward coming from Q learning In 

that the only real difference between the two methods is that DQL 

approximates the values in the Q table rather than trying to populate them 

manually. Precisely how this is done is the linkage between the epsilon-

greedy search (or an alternative algorithm) and the outcome of the actions. 

The epsilon-greedy search algorithm solves for how do we decide whether 

to exploit or explore and we in turn update the Q matrix based on the 

value of the actions at that state. In this sense, we can see that we want to 

minimize the loss between reaching our goal and the action we take. In 

this sense, we now have something to utilize gradient descent on, which is 

represented as the following equation:

Li i a i iy Q s aq qm( ) = - ( )( )é
ë

ù
û

 ~ ,, ; 
2
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where μ = behavior policy, θ = neural network parameters.

Both the target label and the Q matrix are predicted by two separate 

neural networks. The target network shares the weights and biases of the 

Q network, but they are updated after the Q network. Moving forward, 

however, let us discuss the importance of experience replay and how 

we utilize it here. Neural networks will overwrite the weights if we 

introduce completely new data in the context of reinforcement learning. 
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As such, this is why often there are different models that are trained for 

different purposes. Experience replay is how we make usage of observed 

experiences by storing them and then this helps to reduce the correlation 

we might observe between experiences. Practically speaking, we save in 

memory the tuple we introduced in the beginning of the chapter. During 

training, we will calculate the target label with the tuple and then apply 

gradient descent such that we have weights and biases that will generalize 

well on the entire environment. Moving forward, however, let us now 

try to work through a problem using Deep Q Learning and see how the 

complexity of our problem has changed significantly.

�Playing Doom with Deep Q Learning
One of the classic examples for utilizing DQL is the original Doom video 

game, shown in Figure 3-6, whose environment is also an excellent one 

in which to test various machine learning algorithms. Doom is a first 

person shooter in which the player must navigate a three-dimensional 

environment in which they are fighting against enemy combatants. 

Because this is an older 3D game, the player moves around in the 

environment in the same way many of our theoretical agents do in a Q 

matrix. This will be the first continuous control problem in which we apply 

Reinforcement Learning.
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Simply stated, we distinguish continuous control systems from 

discrete control by systems in which the variables and parameters would 

be continuous in the former and discrete in the latter. An example of a 

continuous process in the context of reinforcement learning would be 

driving a car or teaching a robot to walk. An example of discrete control 

processes would be the first problem we dealt with, the cart pole, as well 

as other problems within the “classic control” problems such as swinging a 

pendulum. Although there are plenty of discrete tasks worth analyzing for 

the sake of understanding the algorithms, many tasks that would be useful 

to implement with reinforcement learning are continuous. This along with 

the massive size of the state space makes this an excellent candidate for 

Deep Q Learning. We will attack this problem by looking at the difference 

in a simple level vs. a more difficult level and seeing the difference in 

algorithm performance.

Specific to the game itself, the goal is fairly straightforward. We must 

complete the level without dying which ostensibly requires killing enemy 

Figure 3-6.  An Example of a Level Within Doom
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combatants along our way to the end of the level. Most of the enemies 

will retaliate preemptively, so the algorithm will be mainly focused upon 

training on how to react based on this. Broadly speaking, the two major 

processes we will be performing via this algorithm are (1) sampling 

the environment and storing the experiences in the MDP tuple and (2) 

selecting some of these to utilize as batch training examples. Let us begin 

by first discussing how we will preprocess our data for this model in 

addition to what type of model architecture we will utilize.

class DeepQNetwork():

    �def __init__(self, n_units, n_classes, n_filters, stride, 

kernel, state_size, action_size, learning_rate):

    (code redacted, please see github)

        �self.input_matrix = tf.placeholder(tf.float32, [None, 

*state_size])

        self.actions = tf.placeholder(tf.float32, [None])

        �self.target_Q = tf.placeholder(tf.float32, [None, 

*state_size])

        self.network1 = convolution_layer(inputs=self.input_matrix,

                                     filters=self.n_filters,

                                     kernel_size=self.kernel,

                                     strides=self.stride,

                                     activation='elu')

(code redacted please see github)

Similar to prior Tensorflow graphs that we have defined as graphs, 

we will begin by defining a couple of particular attributes. These will be 

utilized later in the “play_doom()” function in doom_example.py, but 

we will address those later. Moving forward, we can see that similar to 

the example we utilized in Super Mario Bros, we will want to use a LeNet 

Architecture, except in this instance, we will be utilizing a layer that 

accepts four dimensions since we are attacking the frames. We similarly 
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eventually flatten the feature maps into an array which we then will output 

via a fully connected softmax layer. From this softmax layer, we will sample 

our actions during training. Figure 3-7 shows an example of the model 

architecture we will be utilizing for our Deep Q Network.

Moving backward to discussing the input data, in the prior example we 

did not stack the frames and instead passed the current and prior states 

as they were, being reformatted matrices of the input data. The reasoning 

behind why this is important, particularly in a three-dimensional 

environment is because it gives the Deep Q Network an understanding of 

the motion that the agent is inducing. This method was proposed by Deep 

Mind. We preprocess and stack the frames via the following function:

def preprocess_frame(frame):

    cropped_frame = frame[30:-10,30:-30]

    normalized_frame = cropped_frame/float(255)

    �preprocessed_frame = transform.resize(normalized_frame, 

[84,84])

    return preprocessed_frame

We first begin by utilizing a grayscaled image, which is given to us in 

this form by the vizdoom library thankfully. In the event that this was not 

grayscale, users should utilize a library such as OpenCV to perform this 

preprocessing. Moving forward, we will scale the pixel values again by 255 

Figure 3-7.  Example Architecture for Deep Q Network
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as we did in the Super Mario example and for the same reasoning. One 

minor difference however, is that we will be cropping out the top of the  

frame in this initial example, since the ceiling in Doom is just for atmospheric  

purposes and doesn’t contain anything worth evaluating. We utilize the 

preceding function here when we are stacking the frames:

def stack_frames(stacked_frames, state, new_episode, stack_size=4):

    frame = preprocess_frame(state)

    if new_episode == True:

        �stacked_frames = deque([np.zeros((84,84), dtype=np.int) 

for i in range(stack_size)], maxlen=4)

        for i in range(4):

            stacked_frames.append(frame)

        stacked_state = np.stack(stacked_frames, axis=2)

    else:

        stacked_frames.append(frame)

        stacked_state = np.stack(stacked_frames, axis=2)

    return stacked_state, stacked_frames

The important takeaway from this function, separate from the 

functions that transform the frames into four stacks, is how precisely this 

happens. When this function is called for the first time, we take the first 

four frames. Moving forward, we append the newest frame while deleting 

the last, such that this process should represent a first in last out (FILO) 

process. Something to keep in mind, however, is that this process isn’t 

very realistic in the sense that humans would not see multiple frames 

staggered, but rather would see them all at once. In addition to this, this 

makes training significantly more difficult because of the memory that 

is used storing these stacked images. Users should keep this in mind 
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when we are working through different examples in the coming chapters. 

Moving forward, we will be utilizing a slightly more elaborate greedy 

epsilon strategy, in which we will also be utilizing a decay rate as shown in 

the following function:

def exploit_explore(session, model, explore_start, explore_

stop, decay_rate, decay_step, state, actions):

    exp_exp_tradeoff = np.random.rand()

    �explore_probability = explore_stop + (explore_start - 

explore_stop) * np.exp(-decay_rate * decay_step)

    if (explore_probability > exp_exp_tradeoff):

        action = random.choice(possible_actions)

    else:

        �Qs = session.run(model.output, feed_dict = {model.

input_matrix: state.reshape((1, * state.shape))})

        choice = np.argmax(Qs)

        action = possible_actions[int(choice)]

The idea behind this is greedy epsilon strategy is essentially the same 

as we saw in the original Q learning example, except that the decay is 

exponential in that it becomes increasingly likely that we will explore less 

over time forcing the algorithm to utilize its accumulated knowledge. Now 

with the helper functions explained, let us now walk through the function 

that will actually be utilized to train the model. Without further ado, let 

us observe the results from training the model on this level. We will then 

move to a different level and see how the model performs on.

�Simple Doom Level
In this scenario, the player is in a simple environment in which they 

can move left, right, and/or shoot at the enemy combatant. This enemy 

combatant will not shoot back and simply moves occasionally to the left 
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Figure 3-9.  Example of Simple Doom Environment

Figure 3-8.  Screenshot of Training Mode

or the right. Readers when running the code should expect an output and 

screenplay to look as shown in Figures 3-8 and 3-9.
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�Training and Performance
Figure 3-10 shows the results from training the Q matrix over various 

episodes as well as the out-of-sample results.

Readers should be aware that tasks like these, as we have spoken about 

due to the preprocessing and computation being utilized, are considerably 

memory intensive. In addition to this, there are times where the neural 

network does not learn appropriately the right course of action to take as it 

gets stuck in local optima. Although the parameters listed have in general 

yielded out-of-sample solutions that are acceptable, there were also 

times where this neural network did not perform well. This is one of the 

limitations.

Figure 3-10.  Deep Q Network Scores During Training
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�Limitations of Deep Q Learning
Deep Q Learning, as we have shown earlier, is not without its faults. 

Separate from this example though, where do most of these inefficiencies 

tend to lie? Sebastian Thrun and Anton Schwartz in 1993 investigated this 

more specifically in their paper Issues in Using Function Approximation for 

Reinforcement Learning. What they found was that Deep Q Networks often 

learned very high action values because of overestimation. This, by design, 

is due to the target label formula given by the following:

y r Q s ai a a i: max~= ¢ ¢+ ( )é
ë

ù
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In this equation, we can see that we always choose the maximum 

known value at that time, which can preference our network to learn 

these values at stages where they might be unrealistically high. This 

is specifically how function approximation can cause overestimation. 

Overestimation, as it can happen here, leads to poor policies and tends to 

induce bias within the model. As this manifested in the Doom example, 

this is exemplified by the fact that the agent oftentimes feels compelled to 

shoot regardless of its position relative to the enemy. How precisely can 

this be fixed?

�Double Q Learning and Double Deep  
Q Networks
As highlighted before in the prior equation, the max operator uses 

the same values to select and evaluate an action given the state of the 

environment. Precisely when we separate this into two separate processes 

(selection and evaluation) do we get Double Q Learning. Double Q 

Learning utilizes two value functions and each of which have two 

respective weight sets. One of the weight sets is utilized for determining 
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the greedy-epsilon exploit or explore trade-off problem and the other 

for determining the value of a given action. We then rewrite the target 

approximation as the following:

Y R Q S Q S at
Q

t t a t t t= + ( )( )+ + +1 1 1g q q, , ; ;arg max

With this now explained, we can discuss Double Q Networks and how 

they are being utilized to overcome the shortcomings of Deep Q Networks. 

Rather than add additional models, we instead utilize the target network 

to estimate the value while utilizing the online network to evaluate the 

explore-exploit decision-making process. The target function for the 

double Q network is the following:

Y R Q S Q S at
DoubleQN

t t a t t tº + ( )( )+ + +
-

1 1 1g q q, , ; ,arg max

�Conclusion
With both examples of Q learning and Deep Q Learning finished, we 

advise the reader to try applying these algorithms in a variety of contexts. 

Where necessary, they can change parameters and fork/change existing 

code and models. Regardless, what I would suggest to readers to keep in 

mind moving forward is the following:

•	 Q learning is straightforward and easy to explain –  

The benefit to this algorithm is that it is easy to 

understand why the Q values are inputted as such. 

For tasks where implementing algorithms requires 

transparency, it is not unwise to consider something like 

this for where it will do.
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•	 Q learning has limitations on large state  
spaces! – While the prior comment holds for simple 

problems, it is important to realize in instances like 

the Doom example and more complex environments, 

Vanilla Q Learning will take an exhaustive amount of 

time to get through.

•	 Deep Q Learning still can fall in local optima! – Like 

other reinforcement learning algorithms, DQN can 

still find locally optimal policies but not the globally 

optimal policy. Finding this global optimum can be 

exhaustive from a training standpoint.

•	 Try implementing Double Q Learning and  
Double Deep Q Networks! – The limitations of 

Q learning and DQNs have been overcome by 

increasingly more advanced techniques and at a 

rapid pace. This starting point should allow you to try 

implementing state-of-the-art algorithms from scratch.

With these examples finished, let’s move on to some other 

reinforcement learning algorithms that we have not covered yet and 

discuss these in depth.
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CHAPTER 4

Market Making via 
Reinforcement 
Learning
Separate from just attacking some of the standard problems in 

reinforcement learning as they are found in many books as an example, 

it’s good to look at fields where the answers are either not as objective 

nor completely solved. One of the best examples of this in finance, 

specifically for reinforcement learning, is market making. We will discuss 

the discipline itself, present some baseline method that isn’t based on 

machine learning, and then test several reinforcement learning–based 

methods.

�What Is Market Making?
In financial markets, there is constantly a need for liquidity among people 

that utilize exchanges. It is likely impossible that at any one given moment 

that every person trying to sell an asset’s orders match precisely with 

the people who want to buy. As such, market makers play a vital role in 

facilitating the execution of orders from people who typically want to take 
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a position in a financial instrument (long or short) for a varying duration of 

time lengths. Typically, market making is described as one of the few ways 

that people in financial markets can consistently make money in financial 

markets as opposed to betting models which take riskier bets but ones 

conditionally with higher payoffs. Let’s now try and understand what the 

data we’re working with is and what we can expect. Figure 4-1 is a sample 

image of an order book with associated orders.
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Figure 4-1 is an example of orders that are sitting on both sides of 

the order book, representing the bid as well as the ask. When someone 

sends an order to an exchange and uses a limit order, the quantity they 

Figure 4-1.  Example Order Book
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are trying to sell sits on the order book until the order is filled. While the 

fill algorithms exclusive to the exchange can vary from one to another, 

they usually seek to fill orders in which they are received such that the 

most recent order is the last order to be filled. The benefit of utilizing 

limit orders is that they can significantly reduce what is known as “market 

impact.” To state it simply, whenever someone wants to buy large amounts 

of something, it signals to the rest of the market that there is significant 

demand. This means that we can affect our own ability to get the best 

possible price and fill our own orders. Because of this, traders often scatter 

their limit orders as to obscure their intentions as best as possible.

To give a more concrete example of market making, let us imagine 

that we are some financial exchange that has a multitude of customers 

that typically want to exchange every large order. However, not all of 

these orders are evenly distributed such that every person who wants to 

buy has another large customer who wants to sell. We therefore decide 

to incentivize market makers, typically by offering very preferential fee 

rates, to provide liquidity such that the orders of these large customers can 

be facilitated. The better that an exchange is at attracting market makers 

such that they bring more liquidity, typically the better the exchange is for 

people who want to trade, particularly institutional buyers.

The basic idea of market making is that someone is generally willing 

to buy and/or sell an instrument at any given price, such that over time 

their strategy produces returns for them. The main attractive aspect of 

market making is that once a successful strategy has been identified that 

is scalable, it is typically valid for significantly longer periods of time than 

traditional directional models that hedge funds and other trading desks 

might take. In addition to this, the risk associated with market making 

is lower. With this being said, market making’s primary difficulty in a 

practical sense is that depending on the market, it can require a large 

amount of capital to facilitate making a market. With that being stated, 
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however, we are going to utilize reinforcement learning to try and develop 

a more intuitive way of developing a strategy rather than trying to perform 

more traditional quantitative finance research.

�Trading Gym
Similar to the OpenAI gym, and the derivatives of that package that we 

have utilized to play various video games such as Super Mario Bros. and 

Doom, readers here will be utilizing Trading Gym. It is an open source 

project whose goal is to make applying reinforcement learning algorithms 

in the context of trading easy. In Figure 4-2, you can see the plot that 

should typically display itself when the environment is rendering.

Figure 4-2.  Trading Gym Visualization

In this environment, readers will typically have three options available 

to them:

	 1.	 Buy the instrument

	 2.	 Sell the instrument

	 3.	 Hold a current position
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Trading Gym typically allows you to work with one (or more) products/

financial instruments where the format of the data is the (bid_product1, 

ask_product1, bid_product2, ask_product2). We define the bid as the best 

possible price at which an individual can buy a product and the ask as the 

best possible price at which it can be sold. We will walk through with the 

reader how to import their own order book data to the environment, but 

prior to that, let us first discuss the problem we are trying to solve and look 

at a more deterministic method of solving the problem.

�Why Reinforcement Learning for This 
Problem?
Although it is not readily apparent from trading gym, all of market making 

requires the use of limit orders to be effective. The downside to market 

orders, because the liquidity needed to fill an order is almost always 

guaranteed (below certain allocations), is that exchanges typically charge 

a sizeable fee. Because of this, the only way to utilize a market making 

strategy is to place orders on the limit order book and allow for them to be 

filled. With that being stated, this then introduces several problems such as 

the following:

	 1.	 What price should I buy?

	 2.	 What price should I sell?

	 3.	 What price should I hold?

All of these questions are not easily answered within the context 

of machine learning. Specifically, the space that we are acting in is 

continuous. As we stated earlier, the market is continuously changing and 

our actions on the market itself can make it more difficult to fill, or not 

fill, our orders. As such, a vanilla machine learning approach doesn’t take 

these environment factors into consideration unless we included them 
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as features. Even then, it would be difficult to try and encode some of 

these aspects unless we have done a significant amount of research on the 

market beforehand. Secondarily, most machine learning methods would 

like be invalid, as this is a time series task. The only appropriate method 

would be a recurrent neural network (RNN), and particularly because 

of the granularity of this task, we would have to predict a considerable 

number of sequences ahead. This would result in a model where we 

held positions for considerably longer on average than we would like to 

in market making context. We want agility and flexibility, whereas using 

a machine learning approach would likely force us to hold positions for 

predetermined periods of time, rather than when it was most advantageous 

for us to exit positions based on the market context. All of these reasons 

justify a reinforcement learning–based approach. Let’s move to describing 

the code and how we can create a reasonable example for us to move on. 

What follows is an example of the code that will execute the function:

memory = Memory(max_size=memory_size)

environment = SpreadTrading(spread_coefficients=[1],

                            data_generator=generator,

                            trading_fee=trading_fee,

                            time_fee=time_fee,

history_length=history_length)

state_size = len(environment.reset())

Before we move further, there are a few important attributes that we 

define for the SpreadTrading() class that we should walk through. Some 

of these are fairly straightforward as in that all transactions in financial 

markets cost money to enact on the average exchange, so we must set a fee. 

In the first example we are utilizing, the exchange data will be synthesized, 

and the second example will use real order book data. We will charge a 

nominal fee that does not correspond to any particular exchange.  
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We set time_fee to 0 as there should be no cost. Most importantly, however, 

we should discuss the DataGenerator class and what it does.

�Synthesizing Order Book Data  
with Trading Gym
When working with trading gym, we have the option of either directly 

working with order book data or synthesizing our own. To start, we will be 

working with the WavySignal function, shown as follows:

class WavySignal(DataGenerator):

    def _generator(period_1, period_2, epsilon, ba_spread=0):

        i = 0

        while True:

            i += 1

            �bid_price = (1 - epsilon) * np.sin(2 * i * np.pi / 

period_1) + \

                epsilon * np.sin(2 * i * np.pi / period_2)

            yield bid_price, bid_price + ba_spread

For those who are unfamiliar with generator functions, they are 

typically used for instances in which we need to iterate through large 

amounts of data which we have predetermined where it should be read 

from; however, it would be too large to store this data in memory given the 

nature of the application we are seeking. Instead, the objects are stored. 

Moving forward, however, this generator will generate fake data based on 

the preceding logic. With our generator working, we run the file using the 

following command:

"pythonw –m chapter4.market_making_example"
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We should observe an output similar to that in Figure 4-3.

On this particular example, we are utilizing a Deep Q Network to solve 

this problem. As we can see, the DQN prefers to exploit the environment 

more over time rather than emphasizing exploration. This, in addition to 

accrued knowledge, is leading us to achieve higher scores than we were at 

earlier episodes. Because this is synthesized data, there is no  

necessary reason to continue analyzing this problem. This is helpful for 

when the focus we place is training and selecting algorithms. However, in a 

real-world context, we obviously want to solve problems in order to figure 

out what would be a solution we could deploy in a real-life scenario.

�Generating Order Book Data with  
Trading Gym
In this environment, we have two choices: (1) use fake data or (2) use real 

market data. Besides familiarizing yourself with how the environment 

works, I don’t think fake data has much utility. As such, we’re going to 

start utilizing real data. This brings us to the CSVStreamer() class, which is 

shown as follows:

class CSVStreamer(DataGenerator):

def _generator(filename, header=False):

        with open(filename, "r") as csvfile:

            reader = csv.reader(csvfile)

            if header:

Figure 4-3.  Output from WavySignal Data Generator
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                next(reader, None)

            for row in reader:

                #assert len(row) % 2 == 0

                yield np.array(row, dtype=np.float)

(code redacted, please see tgym github!)

The CSVStreamer class essentially can be summarized by  

the _generator() function, which we showed in the code previously. 

It simply looks through each of the rows in the file assuming the first 

column is the bid and second is the ask. Readers can download data from 

LOBSTER that allows them to get different order book data or seek to 

buy this data from a provider such as Bloomberg. This repository can be 

accessed through the following URL: https://lobsterdata.com/.

This is obviously considerably expensive, so it should be reserved for 

people who have large research budgets and/or work at an institution who 

already has a Bloomberg terminal available. The “generator” variable we will 

be using in this example is the CSVStreamer loading the order book data that 

is included in this repository. Moving forward, let us begin by inspecting the 

function that will be performing most of the computation in this example:

def train_model(model, environment):

(code redacted, please see github)

            while step < max_steps:

                step += 1; decay_step += 1

                action, explore_probability = exploit_explore(...)

                state, reward, done, info = environment.step(action)

Similar to the Doom example we showed in the prior chapter, most of 

the code ends up being homogenous and similar. We are going to iterate 

over the environment in the same fashion as earlier, except here, we will 

be focusing on comparing the performance of multiple approaches and 

evaluating which one we should use.
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�Experimental Design
While it is rarely public precisely what market makers use as their 

algorithms, generally speaking we want to utilize a simple set of rules. 

The following algorithms will form our control group and a basic 

understanding of why a rules-based system is superior to that of a 

randomly generated set of choices. As with other experiments, the purpose 

of the control group will allow us to compare the results of our models 

against it to see if we have exceeded the benchmark set by the control 

group. This new set of approaches will form the experimental group. We 

will evaluate the success of the algorithms based on the following criteria:

•	 The overall reward

•	 The average reward over the entirety of the experiment

Without further ado, let us discuss how we arrive at the control group/

baseline algorithm. The following lists the requirements for our two 

strategies:

Strategy 1 (Experiment group)

•	 Randomly select all options.

Strategy 2 (Control group)

•	 Randomly select buy, hold, sell.

•	 If the position is long, sell the asset.

•	 If the position is short, buy the asset.

•	 If we are holding a cash position, randomly select an 

option.
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The code for both strategies will be executed by the baseline_model() 

function, which we show as follows:

def baseline_model(n_actions, info, random=True):

    if random == True:

        �action = np.random.choice(range(n_actions),  

p=np.repeat(1/float(n_actions), 3))

        action = possible_actions[action]

    else:

        if len(info) == 0:

            �action = np.random.choice(range(n_actions),  

p=np.repeat(1/float(n_actions), 3))

            action = possible_actions[action]

        elif info['action'] == 'sell':

            action = buy

        else:

            action = sell

    return action

Readers should be familiar by now with the “info” dictionary which 

displays the information from the environment where there is something 

relevant. In Trading Gym, the info dictionary displays the most recent 

action. In the event that we are holding cash, the dictionary will be empty. 

In the event that we are having a position open, it will read under the 

“action” key, “buy” or “sell,” and sometimes the most recent profit from 

the last action taken in the event that we were not holding cash. For the 

preceding experiment, we will be repeating 100 individual trades over 1000 

trials. In the end after we have trained our model, we will repeat this same 
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scheme and compare the results. The following results we yielded from our 

experiment utilizing both of the respective strategies:

•	 Strategy 1 average reward – 30,890

•	 Strategy 2 average reward – 62,777

We have the following distribution and data associated with these 

experiments (Figures 4-4 and 4-5).

Figure 4-4.  Distribution of Scores from Randomly Choosing 
Actions
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As the preceding experiment of 1000 trials shows, the rewards we 

choose when there is some reasonable logic behind our decision-making 

produces significantly better results compared to randomly choosing 

actions over the entirety of these trials. As such, by that logic, we should 

then be able to further increase our yields if we find a model that optimally 

chooses these results compared with just taking a simple heuristic as we 

did earlier. With this approach in mind, let us take our proposed solutions.

�RL Approach 1: Policy Gradients
While vanilla policy gradients do have their shortcomings, there are a 

relatively restricted amount of decisions that would allow us to easily iterate 

through the choices. The negative to this space is that we might not be 

capturing the continuous element of our state space. With this being stated, 

we have one immediate problem that we should address, which is the loss 

function. When we first utilized policy gradients, we only had two classes 

Figure 4-5.  Distribution of Scores from Algorithmically Choosing 
Answers
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and were operating in a discrete sample space. As such, we were able to 

utilize a log-likelihood loss. In this instance, however, we have multiple 

classes and are operating in a continuous space. These are challenges that 

we should be aware of and whose results we will look at later.

For this example, we will be using the categorical cross-entropy loss 

function as well as another custom loss function. The former is native to 

Keras and is commonly used in classification schemes that include more 

than two classes.

When we run the preceding designed experiment, the results in this 

instance are uniformly quite bad. Across many different parameters and 

different styles, it is largely inadvisable to utilize policy gradients. With that 

in mind, let us try Deep Q Networks.

�RL Approach 2: Deep Q Network
For this example, Q learning is definitely an excellent choice in terms of 

how we frame the problem, but Deep Q Learning ultimately should be 

the method that we choose. The reasoning behind this is the fact that the 

state space, particularly when considering the multitude of options, can 

be quite large. When we are running this part of the function, we should 

notice an output similar to Figure 4-6.

Figure 4-6.  Example Screenshot of Training DQL Model
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During training of several iterations, given the amount of data we have, 

I observed that training above one episode largely was inadvisable. With 

that being said, the results achieved at times were very inconsistent. On 

some iterations, I observed that the results were exceptionally good, some 

outcomes of the model would choose no actions at all, and some actions. 

On several occasions, I observed that the market making algorithm in this 

context did perform considerably well in training but those results were 

not stable nor consistent. Overwhelmingly, I noticed that my suggested 

model performed poorly more often than not and often got stuck making 

decisions that were undesirable. Moving forward however, let us look at the 

results when we repeat the out-of-sample experiment trials (Figure 4-7).

The preceding results are not only substantially better than the 

baseline but outstandingly outperform that of the policy gradient model, 

making this the obvious choice of selection. With an average reward of 

Figure 4-7.  Reward Score Distribution
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34, 286, 348, this would absolutely be a feasible solution. As we can see in 

the plot in Figure 4-7, our scores are desirable and that we seem to have a 

bimodal distribution.

�Results and Discussion
After reviewing all of the results, it is reasonable to state that readers 

should neither use the Deep Q Learning algorithm nor the policy 

gradients. In summary, these are the reasons we are suggesting this:

•	 The baseline algorithm was exceeded – In order to 

justify any experimental approach, we must exceed 

the baseline. It is worthwhile to inspect whether we are 

sampling the data appropriately, or if there is enough 

data for this particular.

•	 Some algorithms lost money – The most objective 

criticism of the first approach we have taken here is 

the fact that it did not achieve its business objectives, 

which was to produce a profitable strategy. Utilizing 

this algorithm in a business context would be 

inadvisable and ultimately beyond what theoretically 

works, we must choose what actually does.

Possible solutions moving forward are to read some of the existing 

literature that is in this space to try and remedy this. With that being 

said, many papers that are publicly available similarly ran into issues 

where algorithms either were momentarily profitable and ultimately 

not profitable. Readers should also feel free to try and apply ActorCritic 

methods in their own time moving forward, but should also be unafraid to 

also try other existing solutions and try different parameters, fee structures, 

and different constraints on the strategy that were not addressed here.  
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The difficulty of Reinforcement Learning research is that the reward 

function design is an abstract process, but with that being said a critical 

component to the design of good experiments.

�Conclusion
With the following example complete, we now have reached the end of 

our first chapter in which we tackle reinforcement learning problems from 

scratch and try and improve upon existing methods. Some key takeaways 

from this chapter are the difficulties in trying to create a deployable 

solution, but proposing to the reader a framework and showing how 

we successively reached better results in sample each time suggested 

that we are getting closer to the answer. Prior to this point, many of the 

problems we have tackled have been relatively straightforward or classic 

examples whose value is being able to transparently show the power 

of the algorithm. Now we have finally gotten to the difficult part of the 

topic, which is learning to push the needle on various solutions. For those 

who are working directly in research or industry, this process should be 

familiar. If it is not, I highly suggest that you begin implementing this. With 

that being said, we will move on to the final chapter where we will repeat 

this process, but on a brand new environment, and we will walk the reader 

through how to create their own OpenAI gym environment from scratch so 

they can begin to do their own research on their own!
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CHAPTER 5

Custom OpenAI 
Reinforcement 
Learning 
Environments
For our final chapter, we will be focusing on OpenAI’s gym package, 

but more importantly trying to understand how we can create our own 

custom environments so we can tackle more than the typical use cases. 

Most of this chapter will focus around what I would suggest regarding 

programming practices for OpenAI as well as recommendations on 

how I would generally write most of this software. Finally, after we have 

completed creating an environment, we will move on to focusing on 

solving the problem. For this instance, we will focus on trying to create and 

solve a new video game.

�Overview of Sonic the Hedgehog
For those who aren’t familiar, Sonic the Hedgehog (Figure 5-1) is another 

classic game, often considered a rival to that of Super Mario Bros. The 

concept of the game is that you are playing a hedgehog that races from 
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one side of the level to the other, with the objective of avoiding or killing 

enemies and collecting rings. If the player gets attacked, they lose all of 

their rings. If they get attacked with 0 rings, they lose a life. If they lose all of 

their lives, the game ends. We will not be focusing on any levels with boss 

battles for now and instead will focus on a simple introduction level (Level 

1). As it relates to this task, our objective will to be to train the agent to 

successfully navigate the level without dying.

Figure 5-1.  Sonic the Hedgehog Screenshot

�Downloading the Game
Foremost, users will need to start by creating a Steam account and then 

downloading Steam to their local machine, if they have not done so 

already. For those not familiar, Steam is a game streaming service that 
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allows players to buy and rent games without having to get a specific 

console. In this context, we will be buying Sonic the Hedgehog ($4.99). After 

the user has downloaded the game, they should see the following screen 

once they have logged into the Steam desktop client (Figure 5-2).

After installing the game, readers should see the play button, 

indicating that the preliminary setup is done. However, there is some 

boiler plate which we need to do with the retro library that we will walk 

the reader through now. Retro is a library that specifically works with older 

video games and making them compatible with OpenAI. This will take 

care of a lot of the heavy lifting that we would otherwise encounter and 

make the process much more straightforward. Regardless, let us download 

the files we need accordingly. First, users should download and clone the 

repository at this URL: https://github.com/openai/retro.

After cloning this repository, we then need to create a virtual 

environment. For those that are not familiar, virtual environments are a 

way of created isolated instances of certain python installations and the 

relative dependencies associated with it. The benefit to this is that for 

Figure 5-2.  Steam Dashboard
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isolated tasks, or projects, we can create python installations that have 

only the dependencies that they use. Once virtualenv is installed, we can 

instantiate it by entering the following commands into the bash terminal:

"sudo mkdir virtual_environments && cd virtual_environments"

"virtualenv [environment name]/python3 –m venv [environment name]"

These commands respectively create the virtual environment 

directory, cd into them, and then create the virtual environment. After this 

is completed, users should then cd into the directory where the locally 

cloned retro library sits. After that, they should type in the following 

command:

"python –m retro.import.sega_classics"

This command writes the respective ROMs for the games that fall 

underneath the sega_classics.py files to our local environment. ROM refers 

to read-only memory and usually in this context refers to the memory 

that stores video games that often was distributed via cartridges, the norm 

before the advent of discs and DVDs. Now that we have downloaded the 

game and its respective ROMs, let’s move forward to how to work with 

retro and python to create a custom environment.

�Writing the Code for the Environment
When looking back to the Super Mario Bros. and Doom examples, readers 

can reference the fact that we used a custom library that utilized some of 

the same techniques. Foremost let us analyze the functions in chapter5/

create_environment.py and describe what each of these will be doing in 

detail. To begin, let us look at the body function as shown as follows:

def create_new_environment(environment_index, n_frames=4):

 (code redacted, please see github!)

    print(dictionary[environment_index]['game'])
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    print(dictionary[environment_index]['state'])

    environment = make(game=dictionary[environment_index]['game'],

    state=dictionary[environment_index]['state'],

    bk2dir="./records")

    environment = ActionsDiscretizer(environment)

    environment = RewardScaler(environment)

    environment = PreprocessFrame(environment)

    environment = FrameStack(environment, n_frames)

    environment = AllowBacktracking(environment)

    return environment

The process of making an environment is fairly straightforward, 

in that we pass through parameters to the make() function from the 

“retro_contest” module. This creates an environment which we then add 

structure to from a variety of functions, until we eventually return back our 

customized and formatted environment. To begin, however, let us first talk 

about one of the most important aspects of our environment, which will be 

creating and defining the actions we can perform within them.

class PreprocessFrame(gym.ObservationWrapper):

def __init__(self, environment, width, height):

        gym.ObservationWrapper.__init__(self, environment)

        self.width = width

        self.height = height

        �self.observation_space = gym.spaces.Box(low=0,

high=255,

shape=(self.height, self.width, 1),

dtype=np.uint8)

    def observation(self, image):

        image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
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        �image = cv2.resize(image, (self.width, self.height), 

interpolation=cv2.INTER_AREA)

        image = image[:, :, None]

        return image

Like most of the problems we have been dealing with when working 

with 2D or 3D video games, we are essentially dealing with a permutation 

of a computer vision problem. As such, we need to start by preprocessing 

the image such that we reduce the input size or the neural network (or 

other method) we will utilize, and then return a single one-dimensional 

matrix of the grayscaled image. Most of this should be familiar to readers 

from the prior chapters, but for posterity, we start by instantiating the 

PreprocessFrame() class, which first accepts as its only argument the 

ObservationWrapper. Readers have worked with this in every example 

earlier, as evidenced from OpenAI Gym source code as follows:

class ObservationWrapper(Wrapper):

    def reset(self, **kwargs):

        observation = self.env.reset(**kwargs)

        return self.observation(observation)

    def step(self, action):

        observation, reward, done, info = self.env.step(action)

        return self.observation(observation), reward, done, info

    def observation(self, observation):

        raise NotImplementedError

This is the core of the library where we step, reset, and yield the current 

state of the environment. Moving back to the PreprocessFrame() class, 

we start by defining the environment, the width and the height of the 

image we want to output. From these three arguments, we also define 

observation space that we will have the ability to manipulate our agent 

within. For this, we utilize the Box() class from gym. This is simply defined 
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as an element of Euclidean space in Rn. In this instance, we would define 

the bounds of this box as 0 and 255, representing the degree of whiteness 

of a given pixel, where 0 is complete absence of whiteness (black) and 

255 is the complete absence of darkness (white). The observation() 

function performs the actual grayscaling of an individual frame and 

outputting it so that we can analyze it. Moving forward, let us get into the 

meat and potatoes of creating an environment with the next class, the 

ActionsDiscretizer().

class ActionsDiscretizer(gym.ActionWrapper):

def __init__(self, env):

        super(ActionsDiscretizer, self).__init__(env)

        �buttons = ["B", "A", "MODE", "START", "UP", "DOWN", 

"LEFT", "RIGHT", "C", "Y", "X", "Z"]

        �actions = [['LEFT'], ['RIGHT'], ['LEFT', 'DOWN'], 

['RIGHT', 'DOWN'], ['DOWN'],

                   ['DOWN', 'B'], ['B']]

        self._actions = []

Starting with the instantiation of the class, readers should direct 

themselves to the buttons and actions array. Depending on whether 

you are designing an environment for a keyboard or for a specific game 

console, the buttons will differ. These buttons correspond to all of the 

possible buttons on a Sega Genesis controller.

With that being said, not every possible action will map to every 

button, particularly in the case of this version of Sonic the Hedgehog. 

Although certain advanced capabilities were added with newer iterations 

of the game, the original game is pretty standard in that Sonic can walk/run 

left or right and can jump using the “B” button. Moving forward, let us look 

at how we create a specific action space.
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      for action in actions:

            _actions = np.array([False] * len(buttons))

            for button in action:

                _actions[buttons.index(button)] = True

            self._actions.append(_actions)

        self.action_space = gym.spaces.Discrete(len(self._actions))

For the array of actions, we then iterate through each of the  

actions in the “actions” array and then create a new array entitled  

“_actions.” This should be an array with dimensions 1 x N where N is the 

number of buttons on the controller and every index is false. Now,  

for each of the buttons in the actions, we want to map that to an array 

where some entries will be False and others True. Finally, this is assigned 

to “action_space” as an attribute of the “self” variable. We have already 

discussed scaling rewards other times, so there is no need to review that 

function. However, we should discuss an important function, particularly 

in games/environments similar to this one.

class AllowBacktracking(gym.Wrapper):

def __init__(self, environment):

        super(AllowBacktracking, self).__init__(environment)

        self.curent_reward = 0

        self.max_reward = 0

    def reset(self, **kwargs):

        self.current_reward = 0

        self.max_reward = 0

        return self.env.reset(**kwargs)

The AllowBacktracting() class is fairly simple in that for 2D 

environments, we must reach the end of the level by going backward 

eventually. With that being stated, however, sometimes, it is possible 

that there is a better path to be taken if we occasionally (however minor) 
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backtrack our steps and then chose and alternative set of actions. We don’t 

want to encourage the reward structure to do this too much, however, so 

we assign the following step function to the environment:

    def step(self, action):

        �observation, reward, done, info = self.environment.

step(action)

        self.current_reward += reward

        reward = max(0, self.current_reward - self.max_reward)

        �self.max_reward = max(self.max_reward, self.current_

reward)

        return observation, reward, done, info

The important part for the reader to take away from this function is the 

fact that we are assigning the reward value to be 0 or above 0. In that case, 

we are not going to go backward if it results in a poor reward. With all of the 

boilerplate done, let us move onward to discussing what model we will be 

using specifically and why.

�A3C Actor-Critic
Readers will recall that we utilized this model when trying to train  

our agent to play Super Mario Bros.; we utilized the Advantage  

Actor-Critic model which was abbreviated as A2C. In Figure 5-3, we can 

see a visualization of an A3C Network.
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As stated earlier, Actor-Critic networks are effective in the sense that 

we are able to use the value function to update the policy function. Rather 

than waiting for an episode to finish and taking all of the actions, regardless 

of which individual ones were good vs. bad, we can incrementally evaluate 

each action and then change our policy accordingly to receive a much 

more optimized result and quicker than using vanilla policy gradients. 

With respect to A3C vs. A2C, A3C tends to be less optimal because we are 

training multiple agents parallel to one another all based off of some set 

of initial global parameters. Each agent, as it explores the environment, 

will update the parameters accordingly, from which other agents will 

update. However, not all agents will update at the same time, hence the 

“asynchronous” nature of this problem. Moving forward, however, let us 

discuss our implementation as it is contained in the A3CModel() class.

Figure 5-3.  A3C Diagram
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class A3CNetwork():

    def __init__(self, s_size, a_size, scope, trainer):

        (code redacted)

layer3 = tf.layers.flatten(inputs=layer3)

            output_layer = fully_connected_layer(inputs=layer3,

            units=512,

activation='softmax')

            outputs, cell_state, hidden_state = lstm_

layer(input=hidden,

size=s_size,

actions=a_size,

apply_softmax=False)

Similar to the A2C solution we deployed earlier, we start by passing 

through a preprocessed image through convolutional layers. This helps us 

to reduce dimensionality and also remove noise from the data as stated 

earlier. However a new step we will feature here that wasn’t in the prior 

example will be to pass the data through an LSTM layer. LSTMs were 

models devised in the 1990s by Sepp Hochreiter and Jürgen Schmidhuber, 

the long short-term memory unit, or LSTM. Let us start by visualizing what 

this model looks like as it is detailed in the image shown in Figure 5-4.
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LSTMs are distinguished structurally by the fact that we observe them 

as blocks, or units, rather than the traditional structure we often see a 

neural network appearing as. With that being said, the same principles are 

generally applied here. However, we have an improvement over the hidden 

state from the vanilla RNN that we discussed earlier that we will begin 

walking through the formulae associated with the LSTM:

i W x W h W c bt xi t hi t hc t i= + + +( )- -s 1 1                                    (2.12)

f W x W h W c bt xf t hf t hf t f= + + +( )- -s 1 1                                 (2.13)

c f c i W x W h bt t t t xc t hc t c= + + +( )- - 1 1tanh                      (2.14)

 o W x W h W c bt xo t ho t co t o= + + +( )-s 1                                    (2.15)

  h o ct t t= ( ) tanh                                                                     (2.16)

where it is the input gate, ft is the forget gate, ct is the cell state, ot is the 

output gate, ht is the output vector, σ is the sigmoid activation function, and 

tanh is the tanh activation function.

Initially, let us draw our attention to the diagram of the model, 

specifically the LSTM unit in the center, and understand the directional 

flow as they relate to the formulae. Preliminarily, let us discuss the 

Figure 5-4.  LSTM Model
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notation. Each block, denoted by rectangles , represents a neural 

network layer, through which we pass through values. The horizontal lines 

with arrows represent the vectors and direction in which the data moves. 

The data, after it moves through a neural network layer, often is passed to a 

pointwise operation object, represented by circles . Both the hidden 

and cell states are initialized at 0 upon initialization of the algorithm. 

Programmatically, most of the computation associated with the LSTM 

layer happens underneath the hood of the “dynamic_rnn()” function that 

is supplied by Tensorflow; however, we create a body function around this 

function where the preceding cells, states, and associated variables are 

defined as follows:

def lstm_layer(input, size, actions, apply_softmax=False):

      input = tf.expand_dims(input, [0])

      �lstm = tf.contrib.rnn.BasicLSTMCell(size, state_is_

tuple=True)

      state_size = lstm.state_size

      step_size = tf.shape(input)[:1]

      cell_init = np.zeros((1, state_size.c), np.float32)

      hidden_init = np.zeros((1, state_size.h), np.float32)

      initial_state = [cell_init, hidden_init]

      cell_state = tf.placeholder(tf.float32, [1, state_size.c])

      hidden_state = tf.placeholder(tf.float32, [1, state_size.h])

      �input_state = tf.contrib.rnn.LSTMStateTuple(cell_state, 

hidden_state)

      (code redacted, please see github!)

Specifically as to where and when an LSTM model is utilized, it is most 

common for them to be applied to sequence-based tasks where a given 

output depends on more than one input. Examples of this might be tasks 

such as spell check, translating languages, and predicting time series. 

As it relates to this specific task, we are preprocessing the data such that 
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we stack frames four at a time. This is typically done to try and simulate 

some form of motion where we determine the best possible action to take 

based on several prior observations. In this instance, the reasoning behind 

why an RNN would be applied is straightforward. While an LSTM is not 

necessary, we thought it useful to show the reader how we can combine 

additional and differing types of machine learning models to this problem. 

Moving forward, let us direct our attention back to the A3C network itself 

and move toward the latter part of the function.

            �self.policy = slim.fully_connected(output_layer, 

a_size,

                activation_fn=tf.nn.softmax,

                �weights_initializer=normalized_columns_

initializer(0.01),

                biases_initializer=None)

            self.value = slim.fully_connected(rnn_out, 1,

                activation_fn=None,

                �weights_initializer=normalized_columns_

initializer(1.0),

                biases_initializer=None)

With the output from the LSTM yielded, we pass this through a fully 

connected layer such that we now have defined our policy and value 

functions, which we will utilize moving forward to produce an output 

matrix. Separately, readers should observe the calculation of the gradient 

and update to the parameters to individually be similar. However, what 

precisely makes this model different is the asynchronous nature of the 

works. Now, we will walk through the final portion of code, which will be 

what we can refer to as the main/master function.

    def play_sonic()

(code redacted, please see github!)

wiith tf.device("/cpu:0"):
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        master_network = AC_Network(s_size,a_size,'global',None)

        num_workers = multiprocessing.cpu_count()

        workers = []

for i in range(num_workers):

            workers.append(Worker(environment=environment,

                                  name=i,

                                  s_size=s_size,

                                  a_sizse=a_size,

                                  trainer=trainer,

                                  saver=saver,

                                  model_path=model_path))

In the following code, we start by creating the master network, which 

contains the global parameters and creating a number of workers based on 

the available CPUs. The previously shown method will ensure that we do 

not utilize more memory than we should and crash the program. Then for 

each of the workers we intend to create, we append them to an array after 

we instantiate them. Moving forward, however, is where the important part 

of the computation happens.

             coord = tf.train.Coordinator()

sess.run(tf.global_variables_initializer())

worker_threads = []

            for worker in workers:

                �worker_work = lambda: worker.work(max_episode_

length=max_episode_length,

                gamma=gamma,

                master_network=master_network,

                sess=sess,

                coord=coord)
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                _thread = threading.Thread(target=(worker_work))

                _thread.start()

                worker_threads.append(_thread)

            coord.join(worker_threads)

Readers should first take note of the tf.train.Coordinator() function that 

we will be using as well as the threading library. For the implementation 

of A3C, it is important to understand what we are doing on the backend 

to clear any potential confusion up. For those that are unaware, a thread 

is an individual flow of execution such that multithreading would allow 

you to run processes on different processors. We create a thread with the 

“_thread” variable by passing it a function, in this case, the “worker_work” 

variable. This is created by the worker.work() function, which we define as 

the following body of code:

    def work(self,max_episode_length,gamma,sess,coord,saver):

        (code redacted, please see github!)

while self.env.is_episode_finished() == False:

action_dist, value_function ,rnn_state = sess.run([self.local_

AC.policy,

           self.local_AC.value,

self.local_AC.state_out]...)}

                    �action = np.random.choice(action_dist[0], 

p=action_dist[0])

                    action = np.argmax(action_dist == action)

                    �reward = self.env.make_action(self.

actions[action]) / 100.0

                    done = self.env.is_episode_finished()

episode_buffer.append([prior_state, action, reward, current_

state, done, value[0,0]])

                    episode_values.append(value[0,0])
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We start by first instantiating a couple of variables by executing the 

computational graph/A3C model. Specifically, in the preceding section 

of code we want to randomly choose actions from the distribution that is 

yielded. From this point, everything else should seem relatively familiar 

from prior examples. We perform an action in the environment, which 

should yield some reward and also a value function. What is new to the 

reader, however, is how we would update the master parameters for the 

workers. This itself ties back into the multithreading example, specifically 

with the coord.join() function. With an understanding of threading and 

where this ties into the implementation of A3C as we have written it, we 

can finally discuss the tf.train.Coodinator() function we briefly brought up 

earlier. This function is utilized to coordinate the termination of multiple 

threads once they have all terminated. This is specifically done with the 

join() function, which we use when we want one thread to wait for another 

to finish. This will cause the main thread to pause and wait for another 

thread to complete. This is precisely where the asynchronous nature of 

A3C comes to life in this problem!

�Conclusion
When training the model for 10 hours, we observed reasonable 

performance; however, something that tends to continuously be a problem 

is the parts of the level where Sonic needs to oftentimes run around the 

circular paths. Because of this, more training is likely recommended. With 

that being said, initially we have noticed the ability of the agent to defeat 

or avoid enemies as well as the ability to move through the level while 

collecting some coins. With this being stated though, this sheds light on 

the difficulty of this problem.

Readers must be aware of the difficulty of reinforcement learning. 

While RL is still a heavily researched field, for those that want to deploy 

these for solutions should be aware that Actor-Critic models in particular 
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can be very difficult to write from scratch. Not even addressing the models 

themselves, we spent a significant bit of time building the boilerplate to 

even handle the environment. While this was a simple 2D game, there 

are fairly complex environments that would merit working alongside and 

engineer who focused entirely on building the tools to render and wrap the 

environment.

With respect to solving the problem itself, the amount of time taken 

to train without an indication of precisely how the problem should be 

tackled can result in a large amount of wasted time. Frame your problems 

appropriately and be prepared to try many different methods, but 

spend far more time in the instance of reinforcement learning framing 

the problem than you would try different approaches. Moreover, when 

you’re designing your environments, consider what the different reward 

structures you could utilize. For example, in the instance of Sonic, do 

you want to preference picking up more rings than less, or is it better to 

preference gaining points from destroying enemies? Obviously, in the 

instance of dying, that should be what yields the largest negative reward, 

but is it worst to die in your eyes from Sonic falling off the map or worse to 

die from getting killed by a random enemy? All of these considerations will 

affect training but should be high-level concerns that should be addressed 

at the beginning of the problem.

Readers are encouraged to utilize the code provided in these examples 

and improve on them where they see fit, perhaps by making certain 

implementations more computationally efficient and also where it is 

appropriate to improve upon the solutions as they were presented. With 

collaboration, we can solve problems of incredible difficulty and drive this 

field forward together.
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APPENDIX A

�Source Code
This appendix references the initial release source code for this book. 
For updates that will happen occasionally to the code base as necessary, 
please check the Github by going to www.apress.com/9781484251263.

�Market Making Model Utilities
from collections import deque

class Memory():

    def __init__(self, max_size):

        self.buffer = deque(maxlen = max_size)

    def add(self, experience):

        self.buffer.append(experience)

    def sample(self, batch_size):

        buffer_size = len(self.buffer)

        index = np.random.choice(np.arange(buffer_size),

                                size=batch_size,

                                replace=True)

        return [self.buffer[i] for i in index]

class DeepQNetworkMM():

https://doi.org/10.1007/978-1-4842-5127-0
http://www.apress.com/9781484251263
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    �def __init__(self, n_units, n_classes, state_size, action_

size, learning_rate):

        self.state_size = state_size

        self.action_size = action_size

        self.learning_rate = learning_rate

        self.n_units = n_units

        self.n_classes = n_classes

        �self.input_matrix = tf.placeholder(tf.float32,  

[None, state_size])

        �self.actions = tf.placeholder(tf.float32,  

[None, n_classes])

        self.target_Q = tf.placeholder(tf.float32, [None])

        �self.layer1 = fully_connected_layer(inputs=self.input_

matrix, units=self.n_units, activation=’selu’)

        �self.hidden_layer = fully_connected_layer(inputs=self.

layer1, units=self.n_units, activation=’selu’)

        �self.output_layer = fully_connected_layer(inputs=self.

hidden_layer, units=n_classes, activation=None)

        �self.predicted_Q = tf.reduce_sum(tf.multiply(self.

output_layer, self.actions), axis=1)

        �self.error_rate = tf.reduce_mean(tf.square(self.

target_Q - self.predicted_Q))

        �self.optimizer = tf.train.RMSPropOptimizer(self.

learning_rate).minimize(self.error_rate) 

Appendix A  Source Code



115

�Policy Gradient Utilities
import keras.layers as layers

from keras import backend

from keras.models import Model

from keras.optimizers import Adam

from keras.initializers import glorot_uniform

class PolicyGradient():

    �def __init__(self, n_units, n_layers, n_columns, n_outputs, 

learning_rate, hidden_activation, output_activation, loss_

function):

        self.n_units = n_units

        self.n_layers = n_layers

        self.n_columns = n_columns

        self.n_outputs = n_outputs

        self.hidden_activation = hidden_activation

        self.output_activation = output_activation

        self.learning_rate = learning_rate

        self.loss_function = loss_function

    def create_policy_model(self, input_shape):

        input_layer = layers.Input(shape=input_shape)

        advantages = layers.Input(shape=[1])

        hidden_layer = layers.Dense(units=self.n_units,

        �activation=self.hidden_activation, use_bias=False, 

kernel_initializer=glorot_uniform(seed=42))(input_

layer)

        �output_layer = layers.Dense(units=self.n_outputs, 

activation=self.output_activation,  use_bias=False, 

kernel_initializer=glorot_uniform(seed=42))(hidden_

layer)
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        def log_likelihood_loss(actual_labels, predicted_labels):

            �log_likelihood = backend.log(actual_labels * 

(actual_labels - predicted_labels) + (1 - actual_

labels) * (actual_labels + predicted_labels))

            �return backend.mean(log_likelihood * advantages, 

keepdims=True)

        if self.loss_function == 'log_likelihood':

            self.loss_function = log_likelihood_loss

        else:

            self.loss_function = 'categorical_crossentropy'

        �policy_model = Model(inputs=[input_layer, advantages], 

outputs=output_layer)

        �policy_model.compile(loss=self.loss_function, 

optimizer=Adam(self.learning_rate))

        �model_prediction = Model(input=[input_layer], 

outputs=output_layer)

        return policy_model, model_prediction

�Models
import tensorflow as tf, numpy as np

from baselines.common.distributions import make_pdtype

activation_dictionary = {'elu': tf.nn.elu,

                         'relu': tf.nn.relu,

                         'selu': tf.nn.selu,

                         'sigmoid': tf.nn.sigmoid,

                         'softmax': tf.nn.softmax,

                          None: None}
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def normalized_columns_initializer(standard_deviation=1.0):

  def initializer(shape, dtype=None, partition_info=None):

    output = np.random.randn(*shape).astype(np.float32)

    �output *= standard_deviation/float(np.sqrt(np.

square(output).sum(axis=0, keepdims=True)))

    return tf.constant(output)

  return initializer

def linear_operation(x, size, name, initializer=None, bias_

init=0):

  with tf.variable_scope(name):

    �weights = tf.get_variable("w", [x.get_shape()[1], size], 

initializer=initializer)

    �biases = tf.get_variable("b", [size], initializer=tf.

constant_initializer(bias_init))

    return tf.matmul(x, weights) + biases

def convolution_layer(inputs, dimensions, filters, kernel_size, 

strides, gain=np.sqrt(2), activation='relu'):

    if dimensions == 3:

        return tf.layers.conv1d(inputs=inputs,

                                filters=filters,

                                kernel_size=kernel_size,

                                �kernel_initializer=tf.

orthogonal_initializer(gain),

                                strides=(strides),

                                �activation=activation_

dictionary[activation])
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    elif dimensions == 4:

        return tf.layers.conv2d(inputs=inputs,

                                filters=filters,

                                kernel_size=kernel_size,

                                �kernel_initializer=tf.

orthogonal_initializer(gain),

                                strides=(strides),

                                �activation=activation_

dictionary[activation])

def fully_connected_layer(inputs, units, activation, gain=np.

sqrt(2)):

    return tf.layers.dense(inputs=inputs,

                           units=units,

                           �activation=activation_

dictionary[activation],

                           �kernel_initializer=tf.orthogonal_

initializer(gain))

def lstm_layer(input, size, actions, apply_softmax=False):

      input = tf.expand_dims(input, [0])

      �lstm = tf.contrib.rnn.BasicLSTMCell(size, state_is_

tuple=True)

      state_size = lstm.state_size

      step_size = tf.shape(input)[:1]

      cell_init = np.zeros((1, state_size.c), np.float32)

      hidden_init = np.zeros((1, state_size.h), np.float32)

      initial_state = [cell_init, hidden_init]

      cell_state = tf.placeholder(tf.float32, [1, state_size.c])

      hidden_state = tf.placeholder(tf.float32, [1, state_size.h])

      �input_state = tf.contrib.rnn.LSTMStateTuple(cell_state, 

hidden_state)
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      _outputs, states = tf.nn.dynamic_rnn(cell=lstm,

                                       inupts=input,

                                       �initial_state=input_

state,

                                          sequence_length=step_size,

                                       time_major=False)

      _cell_state, _hidden_state = states

      output = tf.reshape(_outputs, [-1, size])

      output_state = [_cell_state[:1, :], _hidden_state[:1, :]]

      �output = linear_operation(output, actions, "logits", 

normalized_columns_initializer(0.01))

      output = tf.nn.softmax(output, dim=-1)

      return output, _cell_state, _hidden_state

def create_weights_biases(n_layers, n_units, n_columns, n_outputs):

    '''

    �Creates dictionaries of variable length for differing 

neural network models

    Arguments

    n_layers - int - number of layers

    �n_units - int - number of neurons within each individual 

layer

    n_columns - int - number of columns within dataset

    :return: dict (int), dict (int)

    '''

    weights, biases = {}, {}

    for i in range(n_layers):

        if i == 0:

            �weights['layer'+str(i)] = tf.Variable(tf.random_

normal([n_columns, n_units]))
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            �biases['layer'+str(i)] = tf.Variable(tf.random_

normal([n_columns]))

        elif i != 0 and i != n_layers-1:

            �weights['layer'+str(i)] = tf.Variable(tf.random_

normal([n_units, n_units]))

            �biases['layer'+str(i)] = tf.Variable(tf.random_

normal([n_units]))

        elif i != 0 and i == n_layers-1:

            �weights['output_layer'] = tf.Variable(tf.random_

normal([n_units, n_outputs]))

            �biases['output_layer'] = tf.Variable(tf.random_

normal([n_outputs]))

    return weights, biases

def create_input_output(input_dtype, output_dtype, n_columns, 

n_outputs):

    '''

    Create placeholder variables for tensorflow graph

    '''

    X = tf.placeholder(shape=(None, n_columns), dtype=input_dtype)

    Y = tf.placeholder(shape=(None, n_outputs), dtype=output_dtype)

    return X, Y

class DeepQNetwork():

    �def __init__(self, n_units, n_classes, n_filters, stride, 

kernel, state_size, action_size, learning_rate):

        self.state_size = state_size

        self.action_size = action_size

        self.learning_rate = learning_rate

        self.n_units = n_units
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        self.n_classes = n_classes

        self.n_filters = n_filters

        self.stride = stride

        self.kernel = kernel

        �self.input_matrix = tf.placeholder(tf.float32,  

[None, state_size])

        �self.actions = tf.placeholder(tf.float32,  

[None, n_classes])

        self.target_Q = tf.placeholder(tf.float32, [None])

        �self.network1 = convolution_layer(inputs=self.input_

matrix,

                                     filters=self.n_filters,

                                     kernel_size=self.kernel,

                                     strides=self.stride,

                                     dimensions=4,

                                     activation='elu')

        �self.network1 = tf.layers.batch_normalization(self.

network1, training=True, epsilon=1e-5)

        self.network2 = convolution_layer(inputs=self.network1,

                                     filters=self.n_filters*2,

                                     �kernel_size=int(self.

kernel/2),

                                     strides=int(self.stride/2),

                                     dimensions=4,

                                     activation='elu')

        �self.network2 = tf.layers.batch_

normalization(inputs=self.network2, training=True, 

epsilon=1e-5)
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        self.network3 = convolution_layer(inputs=self.network2,

                                     filters=self.n_filters*4,

                                     �kernel_size=int(self.

kernel/2), 

strides=int(self.

stride/2), dimensions=4, 

activation=’elu’)

        �self.network3 = tf.layers.batch_

normalization(inputs=self.network3, training=True, 

epsilon=1e-5)

        self.network3 = tf.layers.flatten(inputs=self.network3)

        self.output = fully_connected_layer(inputs=self.network3,

                                            units=self.n_units,

                                              activation='elu')

        self.output = fully_connected_layer(inputs=self.output,

                            �units=n_classes, activation=None)

        �self.predicted_Q = tf.reduce_sum(tf.multiply(self.

output, self.actions), axis=1)

        �self.error_rate = tf.reduce_mean(tf.square(self.

target_Q - self.predicted_Q))

        �self.optimizer = tf.train.RMSPropOptimizer(self.

learning_rate).minimize(self.error_rate)

class ActorCriticModel():

    �def __init__(self, session, environment, action_space,  

n_batches, n_steps, reuse=False):

Appendix A  Source Code



123

        session.run(tf.global_variables_initializer())

        self.distribution_type = make_pdtype(action_space)

        height, weight, channel = environment.shape

        �inputs_ = tf.placeholder(tf.float32, [height, weight, 

channel], name='inputs')

        scaled_images = tf.cast(inputs_, tf.float32)/float(255)

        with tf.variable_scope('model', reuse=reuse):

            �layer1 = tf.layers.batch_normalization(convolution_

layer(inputs=scaled_images,

          filters=32,

          kernel_size=8,

          strides=4,

          dimensions=3))

            �layer2 = tf.layers.batch_normalization(convolution_

layer(inputs=tf.nn.relu(layer1),

          filters=64,

          kernel_size=4,

          strides=2,

          dimensions=3))

            �layer3 = tf.layers.batch_normalization(convolution_

layer(inputs=tf.nn.relu(layer2),

          filters=64,

          kernel_size=3,

          strides=1,

          dimensions=3))

            layer3 = tf.layers.flatten(inputs=layer3)

            �output_layer = fully_connected_layer(inputs=layer3, 

units=512, activation='softmax')
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            �self.distribution, self.logits = self.distribution_

type.pdfromlatent(output_layer, init_scale=0.01)

            �value_function = fully_connected_layer(output_

layer, units=1, activation=None)[:, 0]

        self.initial_state = None

        sampled_action = self.distribution.sample()

        def step(current_state, *_args, **_kwargs):

            �action, value = session.run([sampled_action, value_

function], {inputs_: current_state})

            return action, value

        def value(current_state, *_args, **_kwargs):

            �return session.run(value_function, {inputs_: 

current_state})

        def select_action(current_state, *_args, **_kwargs):

            �return session.run(sampled_action, {inputs_: 

current_state})

        self.inputs_ = inputs_

        self.value_function = value_function

        self.step = step

        self.value = value

        self.select_action = select_action
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�Chapter 1
�OpenAI Example
import gym

def cartpole():

    environment = gym.make('CartPole-v1')

    environment.reset()

    for _ in range(1000):

        environment.render()

        action = environment.action_space.sample()

        �observation, reward, done, info = environment.

step(action)

        print("Step {}:".format(_))

        print("action: {}".format(action))

        print("observation: {}".format(observation))

        print("reward: {}".format(reward))

        print("done: {}".format(done))

        print("info: {}".format(info))

if __name__ == '__main__':

    cartpole()

�Chapter 2
�Cart Pole Example

import gym, numpy as np, matplotlib.pyplot as plt

from neural_networks.policy_gradient_utilities import 

PolicyGradient

#Parameters
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n_units = 5

gamma = .99

batch_size = 50

learning_rate = 1e-3

n_episodes = 10000

render = False

goal = 190

n_layers = 2

n_classes = 2

environment = gym.make('CartPole-v1')

environment_dimension = len(environment.reset())

def calculate_discounted_reward(reward, gamma=gamma):

    output = [reward[i] * gamma**i for i in range(0, 

len(reward))]

    return output[::-1]

def score_model(model, n_tests, render=render):

    scores = []

    for _ in range(n_tests):

        environment.reset()

        observation = environment.reset()

        reward_sum = 0

        while True:

            if render:

                environment.render()

            �state = np.reshape(observation, [1, environment_

dimension])

            predict = model.predict([state])[0]

            action = np.argmax(predict)

            �observation, reward, done, _ = environment.

step(action)
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            reward_sum += reward

            if done:

                break

        scores.append(reward_sum)

    environment.close()

    return np.mean(scores)

def cart_pole_game(environment, policy_model, model_

predictions):

    loss = []

    n_episode, reward_sum, score, episode_done = 0, 0, 0, False

    n_actions = environment.action_space.n

    observation = environment.reset()

    states = np.empty(0).reshape(0, environment_dimension)

    actions = np.empty(0).reshape(0, 1)

    rewards = np.empty(0).reshape(0, 1)

    discounted_rewards = np.empty(0).reshape(0, 1)

    while n_episode < n_episodes:

        �state = np.reshape(observation, [1, environment_

dimension])

        prediction = model_predictions.predict([state])[0]

        �action = np.random.choice(range(environment.action_

space.n), p=prediction)

        states = np.vstack([states, state])

        actions = np.vstack([actions, action])

        �observation, reward, episode_done, info = environment.

step(action)

        reward_sum += reward

        rewards = np.vstack([rewards, reward])

Appendix A  Source Code



128

        if episode_done == True:

            �discounted_reward = calculate_discounted_

reward(rewards)

            �discounted_rewards = np.vstack([discounted_rewards, 

discounted_reward])

            rewards = np.empty(0).reshape(0, 1)

            if (n_episode + 1) % batch_size == 0:

               discounted_rewards -= discounted_rewards.mean()

               discounted_rewards /= discounted_rewards.std()

                discounted_rewards = discounted_rewards.squeeze()

                actions = actions.squeeze().astype(int)

                train_actions = np.zeros([len(actions), n_actions])

                train_actions[np.arange(len(actions)), actions] = 1

               �error = policy_model.train_on_batch([states, 

discounted_rewards], train_actions)

               loss.append(error)

               �states = np.empty(0).reshape(0, environment_

dimension)

               actions = np.empty(0).reshape(0, 1)

               discounted_rewards = np.empty(0).reshape(0, 1)

               �score = score_model(model=model_predictions, 

n_tests=10)

               �print('''\nEpisode: %s \nAverage Reward: %s  \

nScore: %s \nError: %s'''

                      �)%(n_episode+1, reward_sum/float(batch_

size), score, np.mean(loss[-batch_

size:]))
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                if score >= goal:

                    break

                reward_sum = 0

            n_episode += 1

            observation = environment.reset()

            

    �plt.title('Policy Gradient Error plot over %s Episodes'%(n_

episode+1))

    plt.xlabel('N batches')

    plt.ylabel('Error Rate')

    plt.plot(loss)

    plt.show()

if __name__ == '__main__':

    mlp_model = PolicyGradient(n_units=n_units,

                              n_layers=n_layers,

                              n_columns=environment_dimension,

                              n_outputs=n_classes,

                              learning_rate=learning_rate,

                              hidden_activation='selu',

                              output_activation='softmax',

                              loss_function='log_likelihood')

    �policy_model, model_predictions = mlp_model.create_policy_

model(input_shape=(environment_dimension, ))

    policy_model.summary()

    cart_pole_game(environment=environment,

                   policy_model=policy_model,

                   model_predictions=model_predictions)
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�Super Mario Example
import gym, numpy as np, matplotlib.pyplot as plt

from neural_networks.policy_gradient_utilities import 

PolicyGradient

#Parameters

n_units = 5

gamma = .99

batch_size = 50

learning_rate = 1e-3

n_episodes = 10000

render = False

goal = 190

n_layers = 2

n_classes = 2

environment = gym.make('CartPole-v1')

environment_dimension = len(environment.reset())

def calculate_discounted_reward(reward, gamma=gamma):

    �output = [reward[i] * gamma**i for i in range(0, 

len(reward))]

    return output[::-1]

def score_model(model, n_tests, render=render):

    scores = []

    for _ in range(n_tests):

        environment.reset()

        observation = environment.reset()

        reward_sum = 0

        while True:

            if render:

                environment.render()
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            �state = np.reshape(observation, [1, environment_

dimension])

            predict = model.predict([state])[0]

            action = np.argmax(predict)

            observation, reward, done, _ = environment.step(action)

            reward_sum += reward

            if done:

                break

        scores.append(reward_sum)

    environment.close()

    return np.mean(scores)

def cart_pole_game(environment, policy_model, model_

predictions):

    loss = []

    n_episode, reward_sum, score, episode_done = 0, 0, 0, False

    n_actions = environment.action_space.n

    observation = environment.reset()

    states = np.empty(0).reshape(0, environment_dimension)

    actions = np.empty(0).reshape(0, 1)

    rewards = np.empty(0).reshape(0, 1)

    discounted_rewards = np.empty(0).reshape(0, 1)

    while n_episode < n_episodes:

        �state = np.reshape(observation, [1, environment_

dimension])

        prediction = model_predictions.predict([state])[0]

        �action = np.random.choice(range(environment.action_

space.n), p=prediction)

        states = np.vstack([states, state])

        actions = np.vstack([actions, action])
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        �observation, reward, episode_done, info = environment.

step(action)

        reward_sum += reward

        rewards = np.vstack([rewards, reward])

        if episode_done == True:

            �discounted_reward = calculate_discounted_

reward(rewards)

            �discounted_rewards = np.vstack([discounted_rewards, 

discounted_reward])

            rewards = np.empty(0).reshape(0, 1)

            if (n_episode + 1) % batch_size == 0:

                

                discounted_rewards -= discounted_rewards.mean()

                discounted_rewards /= discounted_rewards.std()

                discounted_rewards = discounted_rewards.squeeze()

                actions = actions.squeeze().astype(int)

                train_actions = np.zeros([len(actions), n_actions])

                train_actions[np.arange(len(actions)), actions] = 1

                �error = policy_model.train_on_batch([states, 

discounted_rewards], train_actions)

                loss.append(error)

                �states = np.empty(0).reshape(0, environment_

dimension)

                actions = np.empty(0).reshape(0, 1)

                discounted_rewards = np.empty(0).reshape(0, 1)

                �score = score_model(model=model_predictions, 

n_tests=10)

Appendix A  Source Code



133

                �print('''\nEpisode: %s \nAverage Reward: %s  \

nScore: %s \nError: %s'''

                      �)%(n_episode+1, reward_sum/float(batch_

size), score, np.mean(loss[-batch_size:]))

                if score >= goal:

                    break

                reward_sum = 0

            n_episode += 1

            observation = environment.reset()

    �plt.title('Policy Gradient Error plot over %s Episodes'%(n_

episode+1))

    plt.xlabel('N batches')

    plt.ylabel('Error Rate')

    plt.plot(loss)

    plt.show()

if __name__ == '__main__':

    mlp_model = PolicyGradient(n_units=n_units,

                              n_layers=n_layers,

                              n_columns=environment_dimension,

                              n_outputs=n_classes,

                              learning_rate=learning_rate,

                              hidden_activation='selu',

                              output_activation='softmax',

                              loss_function='log_likelihood')

        

    �policy_model, model_predictions = mlp_model.create_policy_

model(input_shape=(environment_dimension, ))

    policy_model.summary()
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    cart_pole_game(environment=environment,

                   policy_model=policy_model,

                   model_predictions=model_predictions)

�Chapter 3
�Frozen Lake Example
import os, time, gym, numpy as np

#Parameters

learning_rate = 1e-2

gamma = 0.96

epsilon = 0.9

n_episodes = 10000

max_steps = 100

environment = gym.make('FrozenLake-v0')

Q_matrix = np.zeros((environment.observation_space.n, 

environment.action_space.n))

def choose_action(state):

    '''

    To be used after Q table has been updated, returns an action

    Parameters:

        state - int - the current state of the agent

    :return: int

    '''

    return np.argmax(Q_matrix[state, :])

def exploit_explore(prior_state, epsilon=epsilon, Q_matrix=Q_

matrix):

    '''
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    �One half of the exploit-explore paradigm that we will 

utilize

    Parameters

        �prior_state - int  - the prior state of the environment 

at a given iteration

        �epsilon - float - parameter that we use to determine 

whether we will try a new or current best action

    :return: int

    '''

    if np.random.uniform(0, 1) < epsilon:

        return environment.action_space.sample()

    else:

        return np.argmax(Q_matrix[prior_state, :])

def update_q_matrix(prior_state, observation , reward, action):

    '''

    �Algorithm that updates the values in the Q table to reflect 

knowledge acquired by the agent

    Parameters

        �prior_state - int  - the prior state of the environment 

before the current timestemp

        �observation - int  - the current state of the 

environment

        �reward - int - the reward yielded from the environment 

after an action

        �action - int - the action suggested by the epsilon 

greedy algorithm

    :return: None

    '''
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    prediction = Q_matrix[prior_state, action]

    �actual_label = reward + gamma * np.max(Q_

matrix[observation, :])

    �Q_matrix[prior_state, action] = Q_matrix[prior_state, 

action] + learning_rate*(actual_label - prediction)

def populate_q_matrix(render=False, n_episodes=n_episodes):

    '''

    �Directly implementing Q Learning (Greedy Epsilon) on the 

Frozen Lake Game

    This function populations the empty Q matrix

    Parameters

        �prior_state - int  - the prior state of the environment 

before the current timestemp

        observation - int  - the current state of the environment

        �reward - int - the reward yielded from the environment 

after an action

        �action - int - the action suggested by the epsilon 

greedy algorithm

    :return: None

    '''

    for episode in range(n_episodes):

        prior_state = environment.reset()

        _ = 0

        while _ < max_steps:

            if render == True: environment.render()

            action = exploit_explore(prior_state)
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            �observation, reward, done, info = environment.

step(action)

            update_q_matrix(prior_state=prior_state,

                            observation=observation,

                            reward=reward,

                            action=action)

            prior_state = observation

            _ += 1

            if done:

                break

def play_frozen_lake(n_episodes):

    '''

    �Directly implementing Q Learning (Greedy Epsilon) on the 

Frozen Lake Game

    �This function uses the already populated Q Matrix and 

displays the game being used

    Parameters

        �prior_state - int  - the prior state of the environment 

before the current timestemp

        observation - int  - the current state of the environment

        �reward - int - the reward yielded from the environment 

after an action

        �action - int - the action suggested by the epsilon 

greedy algorithm

    :return: None

    '''
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    for episode in range(n_episodes):

        print('Episode: %s'%episode+1)

        prior_state = environment.reset()

        done = False

        while not done:

            environment.render()

            action = choose_action(prior_state)

            �observation, reward, done, info = environment.

step(action)

            prior_state = observation

            if reward == 0:

                time.sleep(0.5)

            else:

                print('You have won on episode %s!'%(episode+1))

                time.sleep(5)

                os.system('clear')

            if done and reward == -1:

                print('You have lost this episode... :-/')

                time.sleep(5)

                os.system('clear')

                break

if __name__ == '__main__':

    populate_q_matrix(render=False)

    play_frozen_lake(n_episodes=10)
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�Doom Example
import warnings, random, time, tensorflow as tf, numpy as np, 

matplotlib.pyplot as plt

from neural_networks.models import DeepQNetwork

from algorithms.dql_utilities import create_environment, stack_

frames, Memory

from chapter3.frozen_lake_example import exploit_explore

from collections import deque

#Parameters

stack_size = 4

gamma = 0.95

memory_size = int(1e7)

train = True

episode_render = False

n_units = 500

n_classes = 3

learning_rate = 2e-4

stride = 4

kernel = 8

n_filters = 3

n_episodes = 1

max_steps = 100

batch_size = 64

environment, possible_actions = create_environment()

state_size = [84, 84, 4]

action_size = 3 #environment.get_avaiable_buttons_size()

explore_start = 1.0

explore_stop = 0.01

decay_rate = 1e-4

pretrain_length = batch_size
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warnings.filterwarnings('ignore')

#writer = tf.summary.FileWriter("/tensorboard/dqn/1")

write_op = tf.summary.merge_all()

def exploit_explore(session, model, explore_start, explore_

stop, decay_rate, decay_step, state, actions):

    exp_exp_tradeoff = np.random.rand()

    �explore_probability = explore_stop + (explore_start - 

explore_stop) * np.exp(-decay_rate * decay_step)

    if (explore_probability > exp_exp_tradeoff):

        action = random.choice(possible_actions)

    else:

        �Qs = session.run(model.output, feed_dict = {model.

input_matrix: state.reshape((1, *state.shape))})

        choice = np.argmax(Qs)

        action = possible_actions[int(choice)]

    return action, explore_probability

def train_model(model, environment):

    tf.summary.scalar('Loss', model.error_rate)

    saver = tf.train.Saver()

    �stacked_frames = deque([np.zeros((84,84), dtype=np.int) for 

i in range(stack_size)], maxlen=4)

    memory = Memory(max_size=memory_size)

    scores = []

    with tf.Session() as sess:

        sess.run(tf.global_variables_initializer())

        decay_step = 0

        environment.init()

        for episode in range(n_episodes):
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            step, reward_sum = 0, []

            environment.new_episode()

            state = environment.get_state().screen_buffer

            �state, stacked_frames = stack_frames(stacked_

frames, state, True)

            while step < max_steps:

                step += 1; decay_step += 1

           �action, explore_probability = exploit_

explore(session=sess,

                    model=model,

                    explore_start=explore_start,

                    explore_stop=explore_stop,

                    decay_rate=decay_rate,

                    decay_step=decay_step,

                    state=state,

                   actions=possible_actions)

                reward = environment.make_action(action)

                done = environment.is_episode_finished()

                reward_sum.append(reward)

                if done:

                    next_state = np.zeros((84,84), dtype=np.int)

                    �next_state, stacked_frames = stack_

frames(stacked_frames=stacked_frames, 

state=next_state, new_episode=False)

                    step = max_steps

                    total_reward = np.sum(reward_sum)

                    scores.append(total_reward)
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                    print('Episode: {}'.format(episode),

                              �'Total reward: {}'.format(total_

reward),

                              �'Explore P: {:.4f}'.

format(explore_probability))

                    �memory.add((state, action, reward, next_

state, done))

                else:

                    �next_state = environment.get_state().

screen_buffer

                    �next_state, stacked_frames = stack_

frames(stacked_frames, next_state, False)

                    �memory.add((state, action, reward, next_

state, done))

                    state = next_state

                batch = memory.sample(batch_size)

                �states = np.array([each[0] for each in batch], 

ndmin=3)

                actions = np.array([each[1] for each in batch])

                rewards = np.array([each[2] for each in batch])

                �next_states = np.array([each[3] for each in 

batch], ndmin=3)

                dones = np.array([each[4] for each in batch])

                target_Qs_batch = []

                �Qs_next_state = sess.run(model.predicted_Q, 

feed_dict={model.input_matrix: next_states, 

model.actions: actions})

                for i in range(0, len(batch)):
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                    terminal = dones[i]

                    if terminal:

                        target_Qs_batch.append(rewards[i])

                    else:

                        �target = rewards[i] + gamma * 

np.max(Qs_next_state[i])

                        target_Qs_batch.append(target)

                �targets = np.array([each for each in target_Qs_

batch])

                �error_rate, _ = sess.run([model.error_rate, 

model.optimizer], feed_dict={model.input_

matrix: states, model.target_Q: targets, model.

actions: actions})

                '''

                # Write TF Summaries

                �summary = sess.run(write_op, feed_dict={model.

inputs_: states, model.target_Q: targets, 

model.actions_: actions})

                writer.add_summary(summary, episode)

                writer.flush()

            if episode % 5 == 0:

                #saver.save(sess, filepath+'/models/model.ckpt')

                #print("Model Saved")

                '''

    plt.plot(scores)

    plt.title('DQN Performance During Training')

    plt.xlabel('N Episodes')
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    plt.ylabel('Score Value')

    plt.show()

    plt.waitforbuttonpress()

    plt.close()

    return model

def play_doom(model, environment):

    �stacked_frames = deque([np.zeros((84,84), dtype=np.int) for 

i in range(stack_size)], maxlen=4)

    scores = []

    with tf.Session() as sess:

        sess.run(tf.global_variables_initializer())

        totalScore = 0

        for _ in range(100):

            done = False

            environment.new_episode()

            state = environment.get_state().screen_buffer

            �state, stacked_frames = stack_frames(stacked_

frames, state, True)

            while not environment.is_episode_finished():

                �Q_matrix = sess.run(model.output, feed_dict = 

{model.input_matrix: state.reshape((1, *state.

shape))})

                choice = np.argmax(Q_matrix)

                action = possible_actions[int(choice)]

                environment.make_action(action)

                done = environment.is_episode_finished()

                score = environment.get_total_reward()
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                scores.append(score)

                time.sleep(0.01)

                

                if done:

                    break

            score = environment.get_total_reward()

            print("Score: ", score)

        environment.close()

    plt.plot(scores)

    plt.title('DQN Performance After Training')

    plt.xlabel('N Episodes')

    plt.ylabel('Score Value')

    plt.show()

    plt.waitforbuttonpress()

    plt.close()

if __name__ == '__main__':

    model = DeepQNetwork(n_units=n_units,

                         n_classes=n_classes,

                         n_filters=n_filters,

                         stride=stride,

                         kernel=kernel,

                         state_size=state_size,

                         action_size=action_size,

                         learning_rate=learning_rate)

    trained_model = train_model(model=model,

                                environment=environment)

    

    play_doom(model=trained_model,

              environment=environment)
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�Chapter 4
�Market Making Example
import random, tensorflow as tf, numpy as np, matplotlib.pyplot 

as plt

from tgym.envs import SpreadTrading

from tgym.gens.deterministic import WavySignal

from neural_networks.market_making_models import 

DeepQNetworkMM, Memory

from chapter2.cart_pole_example import calculate_discounted_

reward

from neural_networks.policy_gradient_utilities import 

PolicyGradient

from tgym.gens.csvstream import CSVStreamer

#Parameters

np.random.seed(2018)

n_episodes = 1

trading_fee = .2

time_fee = 0

history_length = 2

memory_size = 2000

gamma = 0.96

epsilon_min = 0.01

batch_size = 64

action_size = len(SpreadTrading._actions)

learning_rate = 1e-2

n_layers = 4

n_units = 500

n_classes = 3

goal = 190
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max_steps = 1000

explore_start = 1.0

explore_stop = 0.01

decay_rate = 1e-4

_lambda = 0.95

value_coefficient = 0.5

entropy_coefficient = 0.01

max_grad_norm = 0.5

log_interval = 10

hold =  np.array([1, 0, 0])

buy = np.array([0, 1, 0])

sell = np.array([0, 0, 1])

possible_actions = [hold, buy, sell]

#Classes and variables

generator = CSVStreamer(filename='/Users/tawehbeysolow/

Downloads/amazon_order_book_data2.csv')

#generator = WavySignal(period_1=25, period_2=50, epsilon=-0.5)

memory = Memory(max_size=memory_size)

environment = SpreadTrading(spread_coefficients=[1],

                            data_generator=generator,

                            trading_fee=trading_fee,

                            time_fee=time_fee,

                            history_length=history_length)

state_size = len(environment.reset())

def baseline_model(n_actions, info, random=False):

    if random == True:

        action = �np.random.choice(range(n_actions), p=np.

repeat(1/float(n_actions), 3))
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        action = possible_actions[action]

    else:

        if len(info) == 0:

            action = �np.random.choice(range(n_actions), p=np.

repeat(1/float(n_actions), 3))

            action = possible_actions[action]

        elif info['action'] == 'sell':

            action = buy

        else:

            action = sell

    return action

def score_model(model, n_tests):

    scores = []

    for _ in range(n_tests):

        environment.reset()

        observation = environment.reset()

        reward_sum = 0

        while True:

            "

            #environment.render()

            predict = model.predict([observation.reshape(1, 8)])[0]

            action = possible_actions[np.argmax(predict)]

            observation, reward, done, _ = environment.step(action)

            reward_sum += reward

            if done:

                break

        scores.append(reward_sum)

    return np.mean(scores)

Appendix A  Source Code



149

def exploit_explore(session, model, explore_start, explore_

stop, decay_rate, decay_step, state, actions):

    exp_exp_tradeoff = np.random.rand()

    explore_probability = explore_stop + (explore_start - 

explore_stop) * np.exp(-decay_rate * decay_step)

    if (explore_probability > exp_exp_tradeoff):

        action = random.choice(possible_actions)

    else:

        Qs = session.run(model.output_layer, feed_dict = 

{model.input_matrix: state.reshape((1, 8))})

        choice = np.argmax(Qs)

        action = possible_actions[int(choice)]

    return action, explore_probability

def train_model(environment, dql=None, pg=None, baseline=None):

    scores = []

    done = False

    error_rate, step = 0, 0

    info = {}

    n_episode, reward_sum, score, episode_done = 0, 0, 0, False

    n_actions = len(SpreadTrading._actions)

    observation = environment.reset()

    states = np.empty(0).reshape(0, state_size)

    actions = np.empty(0).reshape(0, len(SpreadTrading._actions))

    rewards = np.empty(0).reshape(0, 1)

    discounted_rewards = np.empty(0).reshape(0, 1)

    observation = environment.reset()

    if baseline == True:

        for episode in range(n_episodes):
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            for _ in range(100):

                action = baseline_model(n_actions=n_actions,

                                        info=info)

                state, reward, done, info = environment.step(action)

                reward_sum += reward

                next_state = np.zeros((state_size,), dtype=np.int)

                step = max_steps

                scores.append(reward_sum)

                �memory.add((state, action, reward, next_state, 

done))

            print('Episode: {}'.format(episode),

                     'Total reward: {}'.format(reward_sum))

            reward_sum = 0

        environment.reset()

        print(np.mean(scores))

        plt.hist(scores)

        plt.xlabel('Distribution of Scores')

        plt.ylabel('Relative Frequency')

        plt.show()

        plt.waitforbuttonpress()

        plt.close()

    elif dql == True:

        loss = []

        model = DeepQNetworkMM(n_units=n_units,

                               n_classes=n_classes,

                               state_size=state_size,

                               action_size=action_size,
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                               learning_rate=learning_rate)

        #tf.summary.scalar('Loss', model.error_rate)

        with tf.Session() as sess:

            sess.run(tf.global_variables_initializer())

            decay_step = 0

            for episode in range(n_episodes):

                current_step, reward_sum = 0, []

                state = np.reshape(observation, [1, state_size])

                while current_step < max_steps:

                    current_step += 1; decay_step += 1

                    �action, explore_probability = exploit_

explore(session=sess,

          model=model,

          explore_start=explore_start,

          explore_stop=explore_stop,

          decay_rate=decay_rate,

          decay_step=decay_step,

          state=state,

          actions=possible_actions)

                    �state, reward, done, info = environment.

step(action)

                    reward_sum.append(reward)

                    if current_step >= max_steps:

                        done = True

                    if done == True:
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                        �next_state = np.zeros((state_size,), 

dtype=np.int)

                        step = max_steps

                        total_reward = np.sum(reward_sum)

                        scores.append(total_reward)

                        �memory.add((state, action, reward, 

next_state, done))

                        print('Episode: {}'.format(episode),

                                  �'Total reward: {}'.

format(total_reward),

                                  'Loss: {}'.format(error_rate),

                                  �'Explore P: {:.4f}'.

format(explore_probability))

                        loss.append(error_rate)

                    elif done != True:

                        next_state = environment.reset()

                        state = next_state

                        �memory.add((state, action, reward, 

next_state, done))

                    batch = memory.sample(batch_size)

                    states = np.array([each[0] for each in batch])

                    actions = np.array([each[1] for each in batch])

                    rewards = np.array([each[2] for each in batch])

                    �next_states = np.array([each[3] for each in 

batch])

                    dones = np.array([each[4] for each in batch])

                    target_Qs_batch = []
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                    �Qs_next_state = sess.run(model.predicted_Q, 

feed_dict={model.input_matrix: next_states, 

model.actions: actions})

                    for i in range(0, len(batch)):

                        terminal = dones[i]

                        if terminal:

                            target_Qs_batch.append(rewards[i])

                        else:

                            �target = rewards[i] + gamma * 

np.max(Qs_next_state[i])

                            target_Qs_batch.append(target)

                    �targets = np.array([each for each in 

target_Qs_batch])

                    �error_rate, _ = sess.run([model.error_rate, 

model.optimizer], feed_dict={model.input_

matrix: states, model.target_Q: targets, 

model.actions: actions})

            if episode == n_episodes - 1:

                market_making(model=model,

                              environment=environment,

                              sess=sess,

                              state=state,

                              dpl=True)

    elif pg == True:

        loss = []
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        mlp_model = PolicyGradient(n_units=n_units,

                                  n_layers=n_layers,

                                  n_columns=8,

                                  n_outputs=n_classes,

                                  learning_rate=learning_rate,

                                  hidden_activation='selu',

                                  output_activation='softmax',

                                  l�oss_function='categorical_

crossentropy')

        �policy_model, model_predictions = mlp_model.create_

policy_model(input_shape=(len(observation), ))

        policy_model.summary()

        while n_episode < n_episodes:

            state = observation.reshape(1, 8)

            prediction = model_predictions.predict([state])[0]

            �action = np.random.choice(range(len(SpreadTrading._

actions)), p=prediction)

            action = possible_actions[action]

            states = np.vstack([states, state])

            actions = np.vstack([actions, action])

            �observation, reward, episode_done, info = 

environment.step(action)

            reward_sum += reward

            rewards = np.vstack([rewards, reward])

            step += 1

            if step == max_steps:

                episode_done = True
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            if episode_done == True:

                �discounted_reward = calculate_discounted_

reward(rewards, gamma=gamma)

                �discounted_rewards = np.vstack([discounted_

rewards, discounted_reward])

                discounted_rewards -= discounted_rewards.mean()

                discounted_rewards /= discounted_rewards.std()

                discounted_rewards = discounted_rewards.squeeze()

                actions = actions.squeeze().astype(int)

                �#train_actions = np.zeros([len(actions), n_

actions])

                �#train_actions[np.arange(len(actions)), 

actions] = 1

                �error = policy_model.train_on_batch([states, 

discounted_rewards], actions)

                loss.append(error)

                states = np.empty(0).reshape(0, 8)

                actions = np.empty(0).reshape(0, 3)

                rewards = np.empty(0).reshape(0, 1)

                discounted_rewards = np.empty(0).reshape(0, 1)

                �score = score_model(model=model_predictions, 

n_tests=10)

                �print("'\nEpisode: %s \nAverage Reward: %s  \

nScore: %s \nError: %s"'

                      �)%(n_episode+1, reward_sum/float(batch_

size), score, np.mean(loss[-batch_

size:]))
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                if score >= goal:

                    break

                reward_sum = 0

                n_episode += 1

                observation = environment.reset()

            if n_episode == n_episodes - 1:

                market_making(model=model_predictions,

                              environment=environment,

                              sess=None,

                              state=state,

                              pg=True)

    if baseline != True:

        �plt.title('Policy Gradient Error plot over %s 

Episodes'%(n_episode+1))

        plt.xlabel('N batches')

        plt.ylabel('Error Rate')

        plt.plot(loss)

        plt.show()

        plt.waitforbuttonpress()

        return model

def market_making(model, environment, sess, state, dpl=None, 

pg=None):

    scores = []

    total_reward = 0

    environment.reset()

    for _ in range(1000):
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        for __ in range(100):

            state = np.reshape(state, [1, state_size])

            if dpl == True:

                �Q_matrix = sess.run(model.output_layer, feed_dict 

= {model.input_matrix: state.reshape((1, 8))})

                choice = np.argmax(Q_matrix)

                action = possible_actions[int(choice)]

            elif pg == True:

                state = np.reshape(state, [1, 8])

                predict = model.predict([state])[0]

                action = np.argmax(predict)

                action = possible_actions[int(action)]

            state, reward, done, info = environment.step(action)

            total_reward += reward

        print('Episode: {}'.format(_),

              'Total reward: {}'.format(total_reward))

        scores.append(total_reward)

        state = environment.reset()

    print(np.mean(scores))

    plt.hist(scores)

    plt.xlabel('Distribution of Scores')

    plt.ylabel('Relative Frequency')

    plt.show()

    plt.waitforbuttonpress()

    plt.close()

if __name__ == '__main__':

    train_model(environment=environment, dql=True)
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�Chapter 5
�Sonic Example
import cv2, gym, numpy as np

from retro_contest.local import make

from retro import make as make_retro

from baselines.common.atari_wrappers import FrameStack

cv2.ocl.setUseOpenCL(False)

class PreprocessFrame(gym.ObservationWrapper):

    """

    �Grayscaling image from three dimensional RGB pixelated 

images

    - Set frame to gray

    - Resize the frame to 96x96x1

    """

    def __init__(self, environment, width, height):

        gym.ObservationWrapper.__init__(self, environment)

        self.width = width

        self.height = height

        self.observation_space = gym.spaces.Box(low=0,

                                 �high=255,shape=(self.height, 

self.width, 1), dtype=np.

uint8)

    def observation(self, image):

        image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)

        �image = cv2.resize(image, (self.width, self.height), 

interpolation=cv2.INTER_AREA)

        image = image[:, :, None]

        return image
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class ActionsDiscretizer(gym.ActionWrapper):

    """

    Wrap a gym-retro environment and make it use discrete

    actions for the Sonic game.

    """

    def __init__(self, env):

        super(ActionsDiscretizer, self).__init__(env)

        �buttons = ["B", "A", "MODE", "START", "UP", "DOWN", 

"LEFT", "RIGHT", "C", "Y", "X", "Z"]

        �actions = [['LEFT'], ['RIGHT'], ['LEFT', 'DOWN'], 

['RIGHT', 'DOWN'], ['DOWN'],

                   ['DOWN', 'B'], ['B']]

        self._actions = []

        """

        What we do in this loop:

        For each action in actions

            - Create an array of 12 False (12 = nb of buttons)

            �For each button in action: (for instance ['LEFT']) 

we need to make that left button index = True

                �- Then the button index = LEFT = True

            �In fact at the end we will have an array where each 

array is an action and each elements True of this array

            are the buttons clicked.

        """

        for action in actions:

            _actions = np.array([False] * len(buttons))

            for button in action:

                _actions[buttons.index(button)] = True

            self._actions.append(_actions)

        self.action_space = gym.spaces.Discrete(len(self._actions))
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    def action(self, a):

        return self._actions[a].copy()

class RewardScaler(gym.RewardWrapper):

    """

    Bring rewards to a reasonable scale for PPO.

    This is incredibly important and effects performance

    drastically.

    """

    def reward(self, reward):

        return reward * 0.01

class AllowBacktracking(gym.Wrapper):

    """

    Use deltas in max(X) as the reward, rather than deltas

    in X. This way, agents are not discouraged too heavily

    from exploring backwards if there is no way to advance

    head-on in the level.

    """

    def __init__(self, environment):

        super(AllowBacktracking, self).__init__(environment)

        self.curent_reward = 0

        self.max_reward = 0

    def reset(self, **kwargs):

        self.current_reward = 0

        self.max_reward = 0

        return self.env.reset(**kwargs)
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    def step(self, action):

        �observation, reward, done, info = self.environment.

step(action)

        self.current_reward += reward

        reward = max(0, self.current_reward - self.max_reward)

        �self.max_reward = max(self.max_reward, self.current_

reward)

        return observation, reward, done, info

def wrap_environment(environment, n_frames=4):

    environment = ActionsDiscretizer(environment)

    environment = RewardScaler(environment)

    environment = PreprocessFrame(environment)

    environment = FrameStack(environment, n_frames)

    environment = AllowBacktracking(environment)

    return environment

def create_new_environment(environment_index, n_frames=4):

    """

    Create an environment with some standard wrappers.

    """

    dictionary = [

        �{'game': 'SonicTheHedgehog-Genesis', 'state': 

'SpringYardZone.Act3'},

        �{'game': 'SonicTheHedgehog-Genesis', 'state': 

'SpringYardZone.Act2'},

        �{'game': 'SonicTheHedgehog-Genesis', 'state': 

'GreenHillZone.Act3'},

        �{'game': 'SonicTheHedgehog-Genesis', 'state': 

'GreenHillZone.Act1'},

        �{'game': 'SonicTheHedgehog-Genesis', 'state': 

'StarLightZone.Act2'},
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        �{'game': 'SonicTheHedgehog-Genesis', 'state': 

'StarLightZone.Act1'},

        �{'game': 'SonicTheHedgehog-Genesis', 'state': 

'MarbleZone.Act2'},

        �{'game': 'SonicTheHedgehog-Genesis', 'state': 

'MarbleZone.Act1'},

        �{'game': 'SonicTheHedgehog-Genesis', 'state': 

'MarbleZone.Act3'},

        �{'game': 'SonicTheHedgehog-Genesis', 'state': 

'ScrapBrainZone.Act2'},

        �{'game': 'SonicTheHedgehog-Genesis', 'state': 

'LabyrinthZone.Act2'},

        �{'game': 'SonicTheHedgehog-Genesis', 'state': 

'LabyrinthZone.Act1'},

        �{'game': 'SonicTheHedgehog-Genesis', 'state': 

'LabyrinthZone.Act3'}]

    print(dictionary[environment_index]['game'])

    print(dictionary[environment_index]['state'])

    environment = make(game=dictionary[environment_index]['game'],

                       state=dictionary[environment_index]['state'],

                       bk2dir="./records")

    environment = wrap_environment(environment=environment,

                                   n_frames=n_frames)

    return environment

def make_test_level_Green():

    return make_test()
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def make_test(n_frames=4):

    """

    Create an environment with some standard wrappers.

    """

    environment = make_retro(game='SonicTheHedgehog-Genesis',

                             state='GreenHillZone.Act2',

                             record="./records")

    environment = wrap_environment(environment=environment,

                                   n_frames=n_frames)

    return environment 
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